@phdthesis{Vaegler2016, author = {Vaegler, Sven}, title = {Entwicklung eines neuen vorwissensbasierten Bildrekonstruktionsalgorithmus f{\"u}r die Cone-Beam-CT Bildgebung in der Strahlentherapie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137445}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In der heutigen Strahlentherapie kann durch eine am Linearbeschleuniger integrierte R{\"o}ntgenr{\"o}hre eine 3D-Bildgebung vor der Bestrahlung durchgef{\"u}hrt werden. Die sogenannte Kegel-Strahl-CT (Cone-Beam-CT, CBCT) erlaubt eine pr{\"a}zise Verifikation der Patientenlagerung sowie ein Ausgleich von Lagerungsungenauigkeiten. Dem Nutzen der verbesserten Patientenlagerung steht jedoch bei t{\"a}glicher Anwendung eine erh{\"o}hte, nicht zu vernachl{\"a}ssigbare Strahlenexposition des Patienten gegen{\"u}ber. Eine Verringerung des Dosisbeitrages bei der CBCT-Bildgebung l{\"a}sst sich durch Reduzierung des Stroms zur Erzeugung der R{\"o}ntgenstrahlung sowie durch Verringerung der Anzahl an Projektionen erreichen. Die so aufgenommen Projektionen lassen sich dann aber nur durch aufwendige Rekonstruktionsverfahren zu qualitativ hochwertigen Bilddatens{\"a}tzen rekonstruieren. Ein Verfahren, dass f{\"u}r die Rekonstruktion vorab vorhandene Vorwissensbilder verwendet, ist der Prior-Image- Constrained-Compressed-Sensing-Rekonstruktionsalgorithmus (PICCS). Die Rekonstruktionsergebnisse des PICCS-Verfahrens {\"u}bertreffen die Ergebnisse des auf den konventionellen Feldkamp-Davis-Kress-Algorithmus (FDK) basierenden Verfahrens, wenn nur eine geringe Anzahl an Projektionen zur Verf{\"u}gung steht. Allerdings k{\"o}nnen bei dem PICCS-Verfahren derzeit keine großen Variationen in den Vorwissensbildern ber{\"u}cksichtigt werden und f{\"u}hren zu einer geringeren Bildqualit{\"a}t. Diese Variationen treten insbesondere durch anatomische Ver{\"a}nderungen wie Tumorverkleinerung oder Gewichtsver{\"a}nderungen auf. Das Ziel der vorliegenden Arbeit bestand folglich darin, einen neuen vorwissensbasierten Rekonstruktionsalgorithmus zu entwickeln, der auf Basis des PICCS-Verfahrens zus{\"a}tzlich die Verwendung von lokalen Verl{\"a}sslichkeitsinformationen {\"u}ber das Vorwissensbild erm{\"o}glicht, um damit die Variationen in den Vorwissensbildern bei der Rekonstruktion entsprechend ber{\"u}cksichtigen zu k{\"o}nnen. Die grundlegende Idee des neu entwickelten Rekonstruktionsverfahrens ist die Annahme, dass die Vorwissensbilder aus Bereichen mit kleinen und großen Variationen bestehen. Darauf aufbauend wird eine Gewichtungsmatrix erzeugt, die die St{\"a}rke der Variationen des Vorwissens im Rekonstruktionsalgorithmus ber{\"u}cksichtigt. In Machbarkeitsstudien wurde das neue Verfahren hinsichtlich der Verbesserung der Bildqualit{\"a}t unter Ber{\"u}cksichtigung g{\"a}ngiger Dosisreduzierungsstrategien untersucht. Dazu z{\"a}hlten die Reduktion der Anzahl der Projektionen, die Akquisition von Projektionen mit kleinerer Fluenz sowie die Verkleinerung des Akquisitionsbereiches. Die Studien erfolgten an einem Computerphantom sowie insbesondere an experimentellen Daten, die mit dem klinischen CBCT aufgenommen worden sind. Zum Vergleich erfolgte die Rekonstruktion mit dem Standardverfahren basierend auf der gefilterten R{\"u}ckprojektion, dem Compressed Sensing- sowie dem konventionellen PICCS-Verfahren. Das neue Verfahren konnte in den untersuchten F{\"a}llen Bilddatens{\"a}tze mit verbesserter bis ausgezeichneter Qualit{\"a}t rekonstruieren, sogar dann, wenn nur eine sehr geringe Anzahl an Projektionen oder nur Projektionen mit starkem Rauschen zur Verf{\"u}gung standen. Demgegen{\"u}ber wiesen die Rekonstruktionsergebnisse der anderen Algorithmen starke Artefakte auf. Damit er{\"o}ffnet das neu entwickelte Verfahren die M{\"o}glichkeit durch die Integration von Zuverl{\"a}ssigkeitsinformationen {\"u}ber die vorhandenen Vorwissensbildern in den Rekonstruktionsalgorithmus, den Dosisbeitrag bei der t{\"a}glichen CBCT-Bildgebung zu minimieren und eine ausgezeichnete Bildqualit{\"a}t erzielen zu k{\"o}nnen.}, subject = {Strahlentherapie}, language = {de} } @phdthesis{Schindele2016, author = {Schindele, Andreas}, title = {Proximal methods in medical image reconstruction and in nonsmooth optimal control of partial differential equations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Proximal methods are iterative optimization techniques for functionals, J = J1 + J2, consisting of a differentiable part J2 and a possibly nondifferentiable part J1. In this thesis proximal methods for finite- and infinite-dimensional optimization problems are discussed. In finite dimensions, they solve l1- and TV-minimization problems that are effectively applied to image reconstruction in magnetic resonance imaging (MRI). Convergence of these methods in this setting is proved. The proposed proximal scheme is compared to a split proximal scheme and it achieves a better signal-to-noise ratio. In addition, an application that uses parallel imaging is presented. In infinite dimensions, these methods are discussed to solve nonsmooth linear and bilinear elliptic and parabolic optimal control problems. In particular, fast convergence of these methods is proved. Furthermore, for benchmarking purposes, truncated proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of our proximal schemes that need less computation time than the semismooth Newton method in most cases. Results of numerical experiments are presented that successfully validate the theoretical estimates.}, subject = {Optimale Kontrolle}, language = {en} } @phdthesis{Richter2014, author = {Richter, Dominik}, title = {Compressed Sensing zur Filterung und Reduktion der Rekonstruktionszeit in der Positronen-Emissions-Tomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Durch die Verwendung radioaktiver Substanzen mit ihrer sch{\"a}digenden Wirkung auf den menschlichen K{\"o}rper besteht in der Positronen-Emissions-Tomographie (PET) ein fortw{\"a}hrendes Interesse an der Reduktion der applizierten Dosis bei gleichbleibender Qualit{\"a}t der Ergebnisse. Zus{\"a}tzlich ist im Hinblick auf die Wirtschaftlichkeit der Systeme eine Reduktion sowohl der Akquisitions- als auch der Rekonstruktionszeit erstrebenswert. In dieser Arbeit werden zwei M{\"o}glichkeiten vorgestellt, diese Ziele durch den Einsatz von Compressed Sensing (CS) zu erreichen. Neben der Entwicklung neuartiger Rekonstruktionsalgorithmen k{\"o}nnen Filtertechniken eingesetzt werden, um eine qualitative Verbesserung rekonstruierter Bilder zu erzielen. Der Vorteil eines Filters besteht unter anderem darin, dass diese retrospektiv angewandt werden k{\"o}nnen. Es ist folglich m{\"o}glich, die Qualit{\"a}t eines Bildes zu {\"u}berpr{\"u}fen und lediglich im Bedarfsfall einen Filter einzusetzen. Die Technik des CS war in den letzten Jahren Gegenstand zahlreicher Forschungsarbeiten im Bereich der Bildgebung, insbesondere in der Magnetresonanztomographie und der Computertomographie (CT). Mit CS k{\"o}nnten bildgebende Verfahren wie die CT oder die PET mit weniger Messungen durchgef{\"u}hrt werden, wodurch sich die Messzeit und die Strahlenexposition reduziert. In der molekularen Bildgebung mit der PET ist CS jedoch weitgehend unbekannt. Im ersten Teil dieser Dissertation wird eine Methode vorgestellt, welche CS als Filtertechnik in der PET einsetzt. Den Ausgangspunkt stellt ein vollst{\"a}ndiger, analytisch rekonstruierter Datensatz dar. Dieser wird mit einer Reihe unterschiedlicher Abtastmuster retrospektiv unterabgetastet und jeweils erneut, unter Verwendung von CS rekonstruiert. Im rauschfreien Fall w{\"u}rde CS stets das Originalbild liefern. Das {\"u}berlagerte Rauschen f{\"u}hrt jedoch zu Artefakten und einer Verschlechterung des Ergebnisses. CS kann nun einerseits das Rauschen vermindern. Andererseits ist es durch die Mittelung mehrerer unterschiedlicher Rekonstruktionen m{\"o}glich, die Artefakte zu reduzieren. Auf diesem Weg kann die Bildqualit{\"a}t signifikant verbessert werden. Es konnte gezeigt werden, dass die Technik sowohl f{\"u}r 2D, als auch f{\"u}r 3D Datens{\"a}tze verwendet werden kann. Die gr{\"o}ßten qualitativen Verbesserungen werden erzielt, wenn der Datensatz lediglich aus wenigen Ereignissen besteht. In diesem Fall ist die Bildqualit{\"a}t der analytischen Rekonstruktionen extrem schlecht, die Verbesserung durch die Filtertechnik mit CS und die damit verbundene Erh{\"o}hung des Signal-Rausch-Verh{\"a}ltnisses jedoch am gr{\"o}ßten. Bei diesen Datens{\"a}tzen k{\"o}nnen die Ergebnisse iterativer Rekonstruktionen {\"u}bertroffen werden. In der Praxis w{\"a}re damit ein Einsatz speziell bei dynamischen oder getriggerten Aufnahmen denkbar. In beiden F{\"a}llen basieren die Rekonstruktionen nicht selten auf wenigen Ereignissen. Die resultierenden Bilder sind h{\"a}ufig von schlechter Qualit{\"a}t, womit eine Verbesserung durch Filterung sinnvoll ist. Der zweite Teil dieser Arbeit besch{\"a}ftigt sich mit der Rohdaten-basierten Triggerung am Kleintier-PET sowie mit dem Einsatz von CS zur Reduktion der Rekonstruktionszeit. Fr{\"u}here Ver{\"o}ffentlichungen zeigten bereits die Anwendbarkeit Rohdaten-basierter Triggermethoden bei humanen Datens{\"a}tzen. Im Hinblick auf eine pr{\"a}klinische Anwendung, speziell bei Datens{\"a}tzen mit dem Fokus auf M{\"a}useherzen, existieren jedoch nur wenige Studien. In dieser Arbeit wird gezeigt, dass die segmentierte Methode des Massenschwerpunkts (COMseg) eine Technik darstellt, welche die kardiale Triggerung sowohl bei Datens{\"a}tzen von Ratten, als auch von M{\"a}usen erlaubt. Ein nicht zu untersch{\"a}tzender Nachteil der COMseg besteht darin, dass vor deren Anwendung die List-Mode Datei in kleine Zeitframes unterteilt und in Sinogramme sortiert werden muss. Auf jedes Sinogramm wird im Anschluss ein Rebinning Algorithmus angewandt. Dies stellt einen enormen Zeitaufwand dar, wodurch sich eine Anwendung bei gr{\"o}ßeren Studien in der Praxis als schwierig erweist. Ziel der Triggermethoden ist die Gewinnung eines Triggersignals, durch welches beispielsweise der Herzschlag in mehrere Phasen aufgeteilt werden kann. Das Triggersignal hat f{\"u}r gew{\"o}hnlich eine d{\"u}nnbesetzte Repr{\"a}sentation im Frequenzraum. Dieses Vorwissen erm{\"o}glicht den Einsatz von CS. Anstelle des vollst{\"a}ndigen Datensatzes wurde lediglich ein Teil der Daten in kleine Zeitframes sortiert und mit der COMseg ausgewertet. Aus diesem unterabgetasteten Datensatz wird mit Hilfe von CS das vollst{\"a}ndige Triggersignal rekonstruiert. Die St{\"a}rke der Unterabtastung entspricht in etwa dem Faktor der Reduktion der Rekonstruktionszeit. Auf diesem Weg ist es m{\"o}glich, eine signifikante Beschleunigung zu erzielen. Die Anwendung dieser Technik ist jedoch nicht auf die COMseg beschr{\"a}nkt. Prinzipiell kann das Verfahren bei allen Methoden der Rohdaten-basierten Triggerung angewandt werden, welche es erlauben, die Abtastpunkte des Signals separat zu berechnen. Damit werden Algorithmen interessant, deren Einsatz aufgrund aufw{\"a}ndiger Berechnungen bislang in der Praxis nicht sinnvoll war. Zusammenfassend legen die in dieser Arbeit vorgestellten Daten nahe, dass CS ein neuartiges Werkzeug in der PET darstellen k{\"o}nnte, mit welchem eine Filterung von Bildern sowie eine Reduktion der Rekonstruktionszeit m{\"o}glich ist.}, subject = {Komprimierte Abtastung}, language = {de} }