@phdthesis{Schon2011, author = {Schon, Christof}, title = {Spektroskopie an substituierten [2.2]Paracyclophanen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In dieser Arbeit wurde der elektronische Grundzustand und der erste angeregte Zustand sowie der Zustand des Ions von substituierten [2.2]Paracyclophanen untersucht. Um die Wechselwirkungen zwischen konjugierten pi-Systemen besser zu verstehen wurden die Molek{\"u}le mit Hilfe von Resonance Enhanced Multiphoton Ionization Spektroskopie (REMPI), VUV-Synchrotronstrahlung und quantenchemischen Rechnungen untersucht. Die Experimente wurden im Molekularstrahl durchgef{\"u}hrt. In den [1+1]-REMPI-Spektren von pseudo-para-Dibrom[2.2]paracyclophan, pseudo-para-Dicyano[2.2]paracyclophan, pseudo-ortho-Dicyano[2.2]paracyclophan, pseudo-para-Diphenyl[2.2]paracyclophan und pseudo-para-Di(trimethylsilyl)[2.2]paracyclophan wird ein kontinuierlicher Signalanstieg beobachtet. Individuelle Schwingungsbanden konnte nicht aufgel{\"o}st werden. Dies ist ein Hinweis darauf, dass die Schwingungszust{\"a}nde im S1-Zustand sehr eng beieinanderliegen. Der Schwerpunkt dieser Arbeit lag auf der Untersuchung der hydroxysubstituierten [2.2]Paracyclophane pseudo-ortho-Dihydroxy[2.2]paracyclophan (o-DHPC), pseudo-para-Dihydroxy[2.2]paracyclophan (p-DHPC) und racemisches-4-Hydroxy[2.2]paracyclophan (MHPC). Die adiabatischen Ionisierungsenergien der Molek{\"u}le wurden aus der Ionenstromkurve mit Hilfe eines Wannier-Fits bestimmt: 7.56eV (o-DHPC), 7.58eV (p-DHPC) und 7.63eV (MHPC). In den Schwellenphotoelektronenspektren (TPES) werden Signalmodulationen im Photonenenergiebereich von 7.8-11eV beobachtet. Hierbei handelt es sich um angeregte Zust{\"a}nde des Kations. Bei ca. 10.5eV wird in den Spektren von allen drei hydroxysubstituierten Molek{\"u}len dissoziative Photoionisation (DPI) beobachtet. Hierbei werden die Bindungen zwischen den aliphatischen Kohlenstoff-Atomen gebrochen. Im [1+1]-REMPI-Spektrum des o-DHPCs wird der S1<-S0-{\"U}bergang bei 31483cm^-1 (3.903eV) beobachtet. Die berechnete adiabatische Anregungsenergie liegt bei 3.87eV (SCS-CC2). Der elektronische Ursprung des o-DHPCs ist +722cm^-1 blauverschoben im Vergleich zum unsubstituierten [2.2]Paracyclophan (PC). Im REMPI-Spektrum werden viele Schwingungsbanden beobachtet. Cluster des o-DHPCs mit Wasser werden ebenfalls beobachtet. Die elektronischen Urspr{\"u}nge der Cluster mit Wasser sind rotverschoben im Vergleich mit dem Monomer. Im o-DHPC(H2O)-Cluster ist das Wassermolek{\"u}l zwischen den beiden OH-Gruppen des Cyclophans {\"u}ber Wasserstoffbr{\"u}ckenbindungen fixiert. In den REMPI-Spektren des o-DHPCs und o-DHPC(H2O)-Clusters wird die Atmungsmode mit hoher Intensit{\"a}t beobachtet. Außerdem tritt eine Twist- und Tilt-Mode in den Spektren auf. Viele Kombinationsbanden der Atmungs, Twist- und Tilt-Mode werden in den Spektren beobachtet. Im [1+1]-REMPI-Spektrum des p-DHPCs werden nur kleine Signalmodulationen mit niedrigen Intensit{\"a}ten im roten Spektralbereich im Vergleich mit dem Ursprung des o-DHPCs beobachtet. Bei der Anregung des p-DHPCs kommt es zu einer großen {\"A}nderung der Struktur. Dies f{\"u}hrt dazu, dass die Franck-Condon-Faktoren f{\"u}r den S1<-S0-{\"U}bergang des p-DHPCs deutlich kleiner sind im Vergleich mit dem o-DHPC (1:10^7). Daher treten die Signale des p-DHPCs im REMPI-Spektrum nur mit geringer Intensit{\"a}t auf. Der Ursprung des S1<-S0 {\"U}bergangs des MHPCs wird im [1+1]-REMPI-Spektrum bei 30772cm^-1 (3.815eV) beobachtet. Die berechnete Anregungsenergie liegt bei 3.79eV (SCS-CC2). Im Vergleich zum unsubstituierten PC wird keine wesentliche Energieverschiebung des S1<-S0-{\"U}bergangs beobachtet. Im REMPI-Spektrum des MHPCs wird die Twist-Mode beobachtet. Die Banden zeigen eine inverse Anharmonizit{\"a}t. Die ab-initio-Rechnungen beschreiben die Potentialkurve des S1-Zustands mit einem Doppelminimum. Die H{\"o}he der Barriere zwischen den beiden Minima h{\"a}ngt vom Basissatz ab. Empirisch wurde entlang der Twist-Mode ein flaches Potential bestimmt. Die aus diesem Potenzial resultierenden Banden und Intensit{\"a}ten der Twist-Mode stimmen mit den experimentellen Beobachtungen sehr gut {\"u}berein. Die [1+1]-REMPI-Spektren des MHPCs mit einem und zwei Wassermolek{\"u}len zeigen einen kontinuierlichen Signalanstieg. Einzelne Schwingungsbanden konnten unter den experimentellen Bedingungen nicht aufgel{\"o}st werden. Der Ursprung des MHPC-Clusters mit einem Wassermolek{\"u}l beginnt bei ca. -180cm^-1 und mit zwei Wassermolek{\"u}len bei ca. -290cm^-1 im Vergleich mit dem Ursprung des Monomers.}, subject = {Paracyclophane}, language = {de} } @phdthesis{Hemberger2011, author = {Hemberger, Patrick}, title = {Photoionisationsstudien an Radikalen und Carbenen mit VUV-Synchrotronstrahlung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56980}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die vorliegende Dissertation untersucht reaktive Intermediaten, speziell Radikale und Carbene und deren Verhalten bei Photoionisation mit VUV-Synchrotronstrahlung. Diese instabilen Verbindungen wurden durch Pyrolyse von teils selbstsynthetisierter Vorl{\"a}ufern in einem kontinuierlichen Molekularstrahl erzeugt und mittels der TPEPICO-Spektroskopie untersucht. Die wichtigsten Ergebnisse dieser Arbeit werden im Anschluss hervorgehoben. Drei Radikale der Zusammensetzung C9H7, Indenyl, 1- und 3-Phenylpropargyl wurden aus ihren bromierten Vorl{\"a}ufern synthetisiert und ihre Ionisierungsenergien bestimmt. Die Frage ob es m{\"o}glich ist alle drei Radikale hinsichtlich ihrer IE zu unterscheiden und dadurch eine Identifikation in einer Flamme m{\"o}glich wird, konnte beantwortet werden. Indenyl und 3-Phenylpropargyl besitzen Ionisierungsenergien von 7.53 und 7.20 eV, was eine Erkennung in Flammen prinzipiell m{\"o}glich macht. F{\"u}r 1-Phenylpropargyl wurde eine IEad von 7.4 eV gemessen, was eine selektive Identifikation erschwert. Die Messwerte wurden durch quantenchemischen Rechnungen {\"u}berpr{\"u}ft und sind mit diesen in guter {\"U}bereinstimmung. Die Photoionisation von Cyclopropenyliden (IEad = 9.17 ± 0.015 eV) wurde untersucht,wobei eine niederenergetische Bande dem Propargylen (IEad = 9.02 ± 0.02 eV), dem HCCCH Isomer der Zusammensetzung C3H2, zugeordnet werden konnte. Die Schwingungsstruktur des Spektrums konnte erfolgreich simuliert und dadurch die Geometrie des Kations ermittelt werden. Als Nebenprodukt im Molekularstrahl wurde Chlorcyclopropenyliden (IEad = 9.17 ± 0.02 eV) durch seine Schwingungsprogression identifiziert. Die Analyse der dissoziativen Photoionisation gestaltet sich als schwierig, da sowohl c-C3H2 als auch c-C3HCl im relevanten Energiebereich fragmentieren k{\"o}nnen und die Anwesenheit von HCl die Auswertung ebenfalls erschwert. Ein L{\"o}sungsvorschlag f{\"u}r dieses Problem wurde ebenfalls aufgezeigt. Der Einfluss von Substitutionen auf die IE wurde am Beispiel des Propargylradikals und seiner zwei bromierten Analoga erforscht. Dabei wurde eine Rotverschiebung (IEad(C3H3) = 8.71 ± 0.02 eV / IEad(BrCCCH2) = 8.16 ± 0.02 eV / IEad(BrHCCCH) = 8.34 ± 0.02 eV) gemessen. Diese ist auf den elektronenspendenden Charakter des Broms begr{\"u}ndet. Beide Brompropargylradikale lassen sich anhand ihrer IE unterscheiden. Die Schwelle zur dissoziativen Photoionisation von C3H2Br zu C3H2 wurde mit 10.1 eV ermittelt, wobei verschiedene Kan{\"a}le f{\"u}r diese Reaktion in Frage kommen. Schwingungsaktivit{\"a}t konnte im TPE-Spektrum des Propargylradikals ebenfalls verzeichnet und die v3 +-Mode mit 1950 cm-1 ermittelt werden. Als letztes Projekt stand die Photoionisation des t-Butyl im Fokus, da teils widerspr{\"u}chliche Messwerte f{\"u}r die IEad in der Literatur publiziert sind. Es konnte ein Wert von 6.75 eV ± 0.03 eV gemessen werden. Die Schwierigkeit bei diesem Experiment ist die Geometrie{\"a}nderung w{\"a}hrend der Ionisierung, da das Radikal pyramidal und das Kation eine planare Struktur im C-Ger{\"u}st besitzt. Die Grenzen der angewendeten Methoden wurden an diesem Beispiel deutlich gemacht. Zur vollst{\"a}ndigen Charakterisierung wurden auch die Vorl{\"a}ufer genau analysiert, da diese durch dissoziative Photoionisation (DPI) Fragmentionen bilden, welche die gleiche Masse besitzen wie die zu untersuchenden Radikale und Carbene. Aus diesen Ergebnissen konnten Bindungsenergien berechnet werden. Von allen untersuchten reaktiven Intermediaten konnten die Ionisierungsenergien mit einer Genauigkeit von ± 20 meV ermittelt werden. Es wurde gezeigt, dass sogar Isomere mit gleicher Molek{\"u}lmasse unterscheidbar sind. Diese Daten lassen sich verwenden um reaktive Zwischenprodukte in Flammen zu identifizieren. Die Identifizierung erm{\"o}glicht es dann geeignete Modelle f{\"u}r Verbrennungsprozesse zu konstruieren oder vorhandene zu verbessern. Diese k{\"o}nnten wiederum helfen die Ruß- und PAK-Bildung besser zu verstehen. Die Ziele dieser Dissertation konnten somit erreicht werden. Massenspektren, welche in Flammen durch VUV-Synchrotronstrahlung aufgenommen wurden, beherbergen eine große F{\"u}lle an gr{\"o}ßeren reaktiven Intermediaten wie beispielsweise das Fluorenyl oder das Biphenylmethylradikal. Deren Ionisation ist bislang nur sehr vage erforscht und w{\"a}re deshalb ein interessantes Projekt um diese Arbeit fortzuf{\"u}hren.}, subject = {Photoionisation}, language = {de} } @phdthesis{Fischer2013, author = {Fischer, Kathrin Helena}, title = {Analyse der chemischen Reaktionen unges{\"a}ttigter Verbindungen mit FEL- und Synchrotronstrahlung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Brilliante Strahlungsquellen werden heute vielfach in der Forschung eingesetzt um Kristallstrukturen, Oberfl{\"a}cheneigenschaften oder Reaktionen zu untersuchen. Als Strahlungsquellen werden daf{\"u}r bevorzugt Freie Elektronenlaser (FEL) oder Synchrotrons eingesetzt, da sie {\"u}ber weite Bereiche durchstimmbar sind und einen hohen Photonenfluss bereitstellen. Im Rahmen der vorliegenden Dissertation werden beide Lichtquellen verwendet um einerseits Isomere von Kohlenwasserstoffradikalen zu identifizieren und andererseits das Verhalten von Borylen und unges{\"a}ttigten Verbindungen bei Photoionisation zu dokumentieren. Als erstes Experiment am FEL wurde ein IR-Spektrum von gasf{\"o}rmigen Allylradikalen aufgenommen. Das Allyl war ein Testlauf, da es als Kohlenwasserstoffradikal mit einer kleinen Dipolmoment{\"a}nderung ein gutes Beispiel f{\"u}r {\"a}hnliche Verbindungen ist. Trotz der kleinen {\"A}nderung des Dipolmoments und der geringen Teilchendichte der Radikale in der Gasphase konnte ein gutes IR-Spektrum mit der IR-UV-Doppelresonanzmethode aufgenommen werden und die beobachteten Banden mit der Literatur zugeordnet werden. Das 3-Trifluoromethyl-3-Phenyl-carben (TFPC) wurde pyrolytisch aus 3-Trifluoromethyl-3-Phenyl-diazirin erzeugt. Dabei kam es beim Großteil der Carbene zu einer Umlagerung zu Trifluorstyrol. Neben dem Hauptprodukt Trifluorstyrol wurde das Triplett TFPC als Nebenprodukt identifiziert. Zus{\"a}tzlich wurden die Isomerisierungsbarrieren f{\"u}r den Triplett- und Singulett-{\"U}bergangszustand berechnet. Die Radikale 1-Phenylpropargyl und 3-Phenylpropargyl sind anhand ihrer IR-Spektren unterscheidbar und lagern sich nicht ineinander oder in Indenyl um. Ausgehend von beiden Radikalen bilden sich die identischen Dimerisierungsprodukte im Massenkanal m/z = 230 (p-Terphenyl) und 228 (1-Phenylethinylnaphthalin (1PEN)). Außergew{\"o}hnlich war die Exklusivit{\"a}t dieser Produkte. Somit m{\"u}ssen deren Reaktionsmechanismen kinetisch viel schneller sein. Die Massen m/z = 230 und 228 waren bereits aus einer massenspektrometrischen Studie ausgehend von Benzol und Ethin bekannt, in der ihre Struktur jedoch nicht gekl{\"a}rt wurde. Somit m{\"u}ssen die gefundenen Dimerisierungsprodukte p-Terphenyl und 1PEN wichtige Intermediate bei der Entstehung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) und Ruß sein. Von gasf{\"o}rmigen NTCDA wurde mittels der TPEPICO-Methode am Synchrotron Schwellenphotoelektronenspektren aufgenommen. Dabei konnte die adiabatische Ionisierungsenergie (IE(ad)) zu 9.66 eV bestimmt werden. Weiterhin wurden noch f{\"u}nf angeregte Zust{\"a}nde beobachtet, die mittels quantenmechanischer Berechnungen zugeordnet wurden. Es wurde die Photoionisation des Cycloheptatrienradikals (Tropyl) untersucht. Dabei wurde die erste Bande bei 6.23 eV der IE(ad) zugeordnet. Mit einer Franck-Condon Simulation wurden die beiden Schwingungsprogressionen einer CC-Streckschwingung (ν16+) und einer Kombination aus einer Ringatmung (ν2+) und ν16+ zugeordnet. Der erste Triplett- und Singulettzustand des angeregten Tropylkations konnte in {\"U}bereinstimmung mit der Literatur zugeordnet werden. Eine Schulter bei 9.85 eV und die intensivste Bande bei 11.6 eV konnten nicht eindeutig interpretiert werden. Neben dem Tropyl erscheint bei etwa 10.55 eV sein dissoziatives Zersetzungsprodukt, das Cyclopentadienylkation. Die IE(ad) des Borylenkomplex [(CO)5CrBN(SiMe3)2] wurde zu 7.1 eV bestimmt. Mit steigender Photonenenergie wurden alle CO-Liganden sequenziell abgespalten, w{\"a}hrend der Borligand auch bei 15 eV noch nicht dissoziierte. Von den f{\"u}nf abgespaltenen CO-Liganden konnte die Auftrittsenergie bei 0 K unter Ber{\"u}cksichtigung der kinetischen Verschiebung gefittet werden. Durch einen einfachen thermodynamischen Zyklus wurden aus den Auftrittsenergien der Kationen die Bindungsenergien berechnet. Dabei zeigte sich, dass die zweite Bindungsenergie im Kation erheblich st{\"a}rker ist als die erste. Dies deutet einen starken trans-Effekt des Borliganden an. In der Dissertation wurden die adiabatische Ionisierungsenergie der Molek{\"u}le sowie die Auftrittsenergien der Fragmente und die Bindungsenergien bestimmt. Zudem konnten Isomere anhand ihrer IR-Spektren unterschieden und ihre Dimerisierungsprodukte identifiziert werden. Damit wurden mit p-Terphenyl und 1PEN zwei weitere bedeutende Intermediate im Bildungsmechanismus von Ruß strukturell aufgekl{\"a}rt. Die Beteiligung dieser Dimerisierungsprodukte am Bildungsmechanismus der PAK initiiert zuk{\"u}nftige Fragen. Was geschieht z.B. mit p-Terphenyl und 1PEN nach ihrer Bildung? Reagieren sie chemisch zu gr{\"o}ßeren Molek{\"u}len oder setzt bei ihnen bereits die Akkumulation zu Partikeln ein? Zus{\"a}tzlich ist die Frage, ob Phenylpropargyl aus der Reaktion von Phenyl- und Propargylradikalen entsteht noch offen. Die erzielten Resultate haben einen wichtigen Schritt im Bildungsmechanismus der PAK identifiziert und damit die Grundlage f{\"u}r zuk{\"u}nftige Experimente gelegt.}, subject = {Synchrotronstrahlung}, language = {de} }