@phdthesis{Brand2012, author = {Brand, Susanne}, title = {Oxidativer Stress und DNA-Sch{\"a}den induziert durch das Peptidhormon Angiotensin II in vivo : Identifizierung des AT1-Rezeptors und reaktiver Sauerstoffspezies als urs{\"a}chliche Faktoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das Renin-Angiotensin-Aldosteron-System (RAAS) reguliert den Blutdruck und den Wasser- und Elektrolythaushalt des K{\"o}rpers. Angiotensin II (Ang II), das aktive Peptid des RAAS, bewirkt eine Vasokonstriktion und in h{\"o}heren Konzentrationen Bluthochdruck. Epidemiologische Studien haben gezeigt, dass eine Verbindung zwischen Hypertonie und dem geh{\"a}uften Auftreten von Krebs besteht. Eine Metaanalyse von 13 Fall-Kontroll-Studien konnte einen Zusammenhang zwischen Hypertonie und einem erh{\"o}hten Risiko, an einem Nierenzellkarzinom zu erkranken nachweisen. In vitro-Studien und Studien an der isolierten Niere konnten bereits genotoxische Effekte des blutdruckregulierenden Hormons Ang II zeigen. Zielsetzung dieser Arbeit war es, zun{\"a}chst in vivo zu pr{\"u}fen, ob steigende Ang II-Konzentrationen einen Einfluss auf die genomische Stabilit{\"a}t von Nieren- und Herzzellen besitzen. Hierzu wurden im Dosisversuch m{\"a}nnliche C57BL/6-M{\"a}use mit osmotischen Minipumpen ausgestattet, die Ang II in vier verschiedenen Konzentrationen zwischen 60 ng/kg min und 1 µg/kg min {\"u}ber einen Zeitraum von 28 Tagen abgeben sollten. W{\"a}hrend des Versuchszeitraums fanden regelm{\"a}ßige, nicht-invasive Blutdruckmessungen an der Maus statt. Die Behandlung mit Ang II f{\"u}hrte zu einem signifikanten Anstieg des Blutdrucks und zu histopathologischen Ver{\"a}nderungen der Glomeruli und des Tubulussystems, was sich in einer verschlechterten Albumin-Ausscheidung wiederspiegelte. Außerdem induzierte die Behandlung mit Ang II die dosisabh{\"a}ngige Bildung von reaktiven Sauerstoffspezies, DNA-Doppelstrangbr{\"u}chen und oxidativer DNA-Sch{\"a}den. Diese Parameter waren bereits in Tieren erh{\"o}ht, die keinen Bluthochdruck entwickelten und stiegen mit der h{\"o}chsten Ang II-Konzentration noch an, obwohl hier im Vergleich zur Vorg{\"a}ngergruppe, die eine geringere Ang II-Konzentration erhielt, kein h{\"o}herer Blutdruck vorlag. Diese Beobachtung deutet auf eine m{\"o}gliche Unabh{\"a}ngigkeit des entstandenen Schadens vom Bluthochdruck hin und lenkt die Aufmerksamkeit auf Ang II als genomsch{\"a}digenden Faktor. Der folgende Interventionsversuch sollte Aufschluss {\"u}ber die m{\"o}gliche blutdruckunabh{\"a}ngige genomsch{\"a}digende Wirkung von Ang II geben. Dazu wurden C57BL/6-M{\"a}use neben der Ang II-Behandlung in einer Konzentration von 600 ng/kg min zus{\"a}tzlich {\"u}ber einen Zeitraum von 28 Tagen mit 5 verschiedenen Substanzen behandelt: Candesartan, Ramipril, Hydralazin, Eplerenon und Tempol. Candesartan ist ein Ang II-Rezeptor-Antagonist, der selektiv den AT1-Rezeptor blockiert. Ramipril wirkt als Hemmer des Angiotensin-Konversions-Enzyms und verhindert die Bildung von endogenem Ang II aus Ang I. Hydralazin, als Vasodilatator, greift nicht in das Renin-Angiotensin-Aldosteron-System ein. Eplerenon blockiert als selektiver Aldosteronantagonist den Mineralkortikoidrezeptor. Tempol wirkt als Antioxidans. Die Behandlung mit Ang II in einer Konzentration von 600 ng/kg min im Interventionsversuch f{\"u}hrte zur Hochregulierung der NADPH-Oxidase 4 und zur Produktion reaktiver Sauerstoffspezies in der Niere und im kardiovaskul{\"a}ren Gewebe. Der entstandene oxidative Stress f{\"u}hrte wiederum zu DNA-Sch{\"a}den und einer Aktivierung der Transkriptionsfaktoren Nrf2 und NF-B. Nrf2-vermittelt wurde die Induktion antioxidativer Gene ausgel{\"o}st, was allerdings nicht ausreichend war, um vor Ang II-induzierten ROS und DNA-Sch{\"a}den zu sch{\"u}tzen. Eine l{\"a}ngerfristige NF-B-Aktivierung durch hohe Ang II-Spiegel kann das {\"U}berleben und die Proliferation von Zellen, die DNA-Sch{\"a}den in Form von Doppelstrangbr{\"u}chen tragen, f{\"o}rdern, was eine Tumor-initiierende Wirkung haben k{\"o}nnte. Die beschriebenen Effekte erh{\"o}hter Ang II-Spiegel konnten durch die Intervention mit dem AT1-Rezeptorblocker Candesartan verhindert werden, was die Beteiligung des Rezeptors nachweist. Eine blutdruckunabh{\"a}ngige, genomsch{\"a}digende Wirkung von Ang II konnte leider durch die Intervention mit Hydralazin nicht verdeutlicht werden, da die erw{\"u}nschte langfristige Blutdrucksenkung ausblieb. Allerdings zeigte die Intervention mit Tempol eine Abnahme an oxidativem Stress und DNA-Sch{\"a}den trotz ausbleibender Blutdrucksenkung. Die Bedeutung von ROS in der Bildung von DNA-Sch{\"a}den und die Unabh{\"a}ngigkeit dieser Sch{\"a}den vom Blutdruck konnten somit hervorgehoben werden. Die Tatsache, dass die Intervention mit Ramipril den Blutdruck nicht senken konnte, der oxidative Stress und die DNA-Sch{\"a}den durch m{\"o}gliche antioxidative Eigenschaften aber vermindert wurden, unterst{\"u}tzt diese Beobachtung. Die Intervention mit Eplerenon f{\"u}hrte zum Teil zu einer Verminderung an ROS und DNA-Sch{\"a}den, brachte diese Parameter aber nicht auf Kontrollniveau zur{\"u}ck. Somit ist eine Beteiligung von Aldosteron nicht auszuschließen.}, subject = {Oxidativer Stress}, language = {de} } @article{BleinBardelDanjeanetal.2015, author = {Blein, Sophie and Bardel, Claire and Danjean, Vincent and McGuffog, Lesley and Healay, Sue and Barrowdale, Daniel and Lee, Andrew and Dennis, Joe and Kuchenbaecker, Karoline B. and Soucy, Penny and Terry, Mary Beth and Chung, Wendy K. and Goldgar, David E. and Buys, Saundra S. and Janavicius, Ramunas and Tihomirova, Laima and Tung, Nadine and Dorfling, Cecilia M. and van Rensburg, Elizabeth J. and Neuhausen, Susan L. and Ding, Yuan Chun and Gerdes, Anne-Marie and Ejlertsen, Bent and Nielsen, Finn C. and Hansen, Thomas V. O. and Osorio, Ana and Benitez, Javier and Andreas Conejero, Raquel and Segota, Ena and Weitzel, Jeffrey N. and Thelander, Margo and Peterlongo, Paolo and Radice, Paolo and Pensotti, Valeria and Dolcetti, Riccardo and Bonanni, Bernardo and Peissel, Bernard and Zaffaroni, Daniela and Scuvera, Giulietta and Manoukian, Siranoush and Varesco, Liliana and Capone, Gabriele L. and Papi, Laura and Ottini, Laura and Yannoukakos, Drakoulis and Konstantopoulou, Irene and Garber, Judy and Hamann, Ute and Donaldson, Alan and Brady, Angela and Brewer, Carole and Foo, Claire and Evans, D. Gareth and Frost, Debra and Eccles, Diana and Douglas, Fiona and Cook, Jackie and Adlard, Julian and Barwell, Julian and Walker, Lisa and Izatt, Louise and Side, Lucy E. and Kennedy, M. John and Tischkowitz, Marc and Rogers, Mark T. and Porteous, Mary E. and Morrison, Patrick J. and Platte, Radka and Eeles, Ros and Davidson, Rosemarie and Hodgson, Shirley and Cole, Trevor and Godwin, Andrew K and Isaacs, Claudine and Claes, Kathleen and De Leeneer, Kim and Meindl, Alfons and Gehrig, Andrea and Wappenschmidt, Barbara and Sutter, Christian and Engel, Christoph and Niederacher, Dieter and Steinemann, Doris and Plendl, Hansjoerg and Kast, Karin and Rhiem, Kerstin and Ditsch, Nina and Arnold, Norbert and Varon-Mateeva, Raymonda and Schmutzler, Rita K. and Preisler-Adams, Sabine and Markov, Nadja Bogdanova and Wang-Gohrke, Shan and de Pauw, Antoine and Lefol, Cedrick and Lasset, Christine and Leroux, Dominique and Rouleau, Etienne and Damiola, Francesca and Dreyfus, Helene and Barjhoux, Laure and Golmard, Lisa and Uhrhammer, Nancy and Bonadona, Valerie and Sornin, Valerie and Bignon, Yves-Jean and Carter, Jonathan and Van Le, Linda and Piedmonte, Marion and DiSilvestro, Paul A. and de la Hoya, Miguel and Caldes, Trinidad and Nevanlinna, Heli and Aittom{\"a}ki, Kristiina and Jager, Agnes and van den Ouweland, Ans M. W. and Kets, Carolien M. and Aalfs, Cora M. and van Leeuwen, Flora E. and Hogervorst, Frans B. L. and Meijers-Heijboer, Hanne E. J. and Oosterwijk, Jan C. and van Roozendaal, Kees E. P. and Rookus, Matti A. and Devilee, Peter and van der Luijt, Rob B. and Olah, Edith and Diez, Orland and Teule, Alex and Lazaro, Conxi and Blanco, Ignacio and Del Valle, Jesus and Jakubowska, Anna and Sukiennicki, Grzegorz and Gronwald, Jacek and Spurdle, Amanda B. and Foulkes, William and Olswold, Curtis and Lindor, Noralene M. and Pankratz, Vernon S. and Szabo, Csilla I. and Lincoln, Anne and Jacobs, Lauren and Corines, Marina and Robson, Mark and Vijai, Joseph and Berger, Andreas and Fink-Retter, Anneliese and Singer, Christian F. and Rappaport, Christine and Geschwantler Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Greene, Mark H. and Mai, Phuong L. and Rennert, Gad and Imyanitov, Evgeny N. and Mulligan, Anna Marie and Glendon, Gord and Andrulis, Irene L. and Tchatchou, Andrine and Toland, Amanda Ewart and Pedersen, Inge Sokilde and Thomassen, Mads and Kruse, Torben A. and Jensen, Uffe Birk and Caligo, Maria A. and Friedman, Eitan and Zidan, Jamal and Laitman, Yael and Lindblom, Annika and Melin, Beatrice and Arver, Brita and Loman, Niklas and Rosenquist, Richard and Olopade, Olufunmilayo I. and Nussbaum, Robert L. and Ramus, Susan J. and Nathanson, Katherine L. and Domchek, Susan M. and Rebbeck, Timothy R. and Arun, Banu K. and Mitchell, Gillian and Karlan, Bethy Y. and Lester, Jenny and Orsulic, Sandra and Stoppa-Lyonnet, Dominique and Thomas, Gilles and Simard, Jacques and Couch, Fergus J. and Offit, Kenenth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C. and Mazoyer, Sylvie and Phelan, Catherine M. and Sinilnikova, Olga M. and Cox, David G.}, title = {An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers}, series = {Breast Cancer Research}, volume = {17}, journal = {Breast Cancer Research}, number = {61}, doi = {10.1186/s13058-015-0567-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145458}, year = {2015}, abstract = {Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95\% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95\% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.}, language = {en} } @phdthesis{Bengel2005, author = {Bengel, Dominik}, title = {Auswirkung von Isch{\"a}mie und Reperfusion auf die Aktivit{\"a}t antioxidativer Enzyme, den Glutathiongehalt und die Lipidperoxidation im Rattenherz nach heterotoper Transplantation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16421}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Bei Transplantationen ist das Organ Isch{\"a}mie und Reperfusion ausgesetzt. Dabei entstehen Sauerstoffradikale, die sch{\"a}digenden Einfluss in Form von Lipidperoxidation auf das Organ haben k{\"o}nnen und so den Transplantationserfolg mindern k{\"o}nnen. Dem Isch{\"a}mie-Reperfusions-Schaden sagt man nach, unter anderem ein Trigger f{\"u}r die Ausbildung einer Transplantatvaskulopathie zu sein. Um dies weiter zu untersuchen wurden anhand von heterotopen Herztranplantationen an Ratten die Bildung von Radikalen anhand der Reaktion der antioxidativ wirksamen endogenen Enzymsysteme untersucht. Ferner wurde das Verhalten des antioxidativ wirksamen Glutathions sowie die Bildung von Lipidhydroperoxiden untersucht. Die Ergebnisse zeigen, dass der Einfluss von langer kalter Isch{\"a}mie auf das Myokard eine signifikante Aktivit{\"a}tserh{\"o}hung der Enzyme Superoxiddismutase, Katalase, Glutathion-Peroxidase und Glutathion-Reduktase, einhergehend mit einer signifikanten Reduktion der Glutathion-Redoxratio (d.h. das Gleichgewicht verschiebt sich von reduziertem zu oxidiertem Glutathion) mit sich bringt. Die gemessenen Aktivit{\"a}tserh{\"o}hungen sowie die Ver{\"a}nderung des Glutathion-Gleichgewichtes zugunsten von oxidiertem Glutathion weisen auf eine erhebliche oxidative Stressbelastung im isch{\"a}mischen Myokard hin. Mit dem Einsetzen der Reperfusion kam es neben isch{\"a}mie- und reperfusionszeitabh{\"a}ngigen Aktivit{\"a}tsver{\"a}nderungen der antioxidativen Enzyme vor allem zu einem dramatischen Verlust von reduziertem und oxidiertem Glutathion bei gleichzeitigem Aktivit{\"a}tsverlust der Glutathion-Reduktase. Diese Ver{\"a}nderungen deuten auf eine erhebliche myokardiale Belastung hin, die in der Bildung von Lipidhydroperoxidationsprodukten und damit unmittelbarer Zellsch{\"a}digung nach langen Isch{\"a}miezeiten deutlich wird. Insgesamt konnte durch verl{\"a}ngerte Isch{\"a}miezeit mit nachfolgender Reperfusion oxidativer Stress induziert werden. Diese myokardiale Stressbelastung wurde durch Schutzmechanismen wie die Regulierung der antioxidativen Enzyme und das Ausschleusen von oxidiertem Glutathion aus dem Myokard im Kurzzeitversuch kompensiert. Auch wenn ein Transplantatversagen ausblieb, ist durch die vermehrte Bildung von Lipidhydroperoxiden von einer initialen Sch{\"a}digung z. B. des Endothels auszugehen, die m{\"o}glicherweise im Langzeitverlauf zu einer fr{\"u}hzeitig auftretenden Transplantatvaskulopathie f{\"u}hrt.}, language = {de} } @article{BeheraJainGangulietal.2022, author = {Behera, Ananyaashree and Jain, Preeti and Ganguli, Geetanjali and Biswas, Mainak and Padhi, Avinash and Pattanaik, Kali Prasad and Nayak, Barsa and Erg{\"u}n, S{\"u}leyman and Hagens, Kristine and Redinger, Natalja and Saqib, Mohd and Mishra, Bibhuti B. and Schaible, Ulrich E. and Karnati, Srikanth and Sonawane, Avinash}, title = {Mycobacterium tuberculosis acetyltransferase suppresses oxidative stress by inducing peroxisome formation in macrophages}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms23052584}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284080}, year = {2022}, abstract = {Mycobacterium tuberculosis (Mtb) inhibits host oxidative stress responses facilitating its survival in macrophages; however, the underlying molecular mechanisms are poorly understood. Here, we identified a Mtb acetyltransferase (Rv3034c) as a novel counter actor of macrophage oxidative stress responses by inducing peroxisome formation. An inducible Rv3034c deletion mutant of Mtb failed to induce peroxisome biogenesis, expression of the peroxisomal β-oxidation pathway intermediates (ACOX1, ACAA1, MFP2) in macrophages, resulting in reduced intracellular survival compared to the parental strain. This reduced virulence phenotype was rescued by repletion of Rv3034c. Peroxisome induction depended on the interaction between Rv3034c and the macrophage mannose receptor (MR). Interaction between Rv3034c and MR induced expression of the peroxisomal biogenesis proteins PEX5p, PEX13p, PEX14p, PEX11β, PEX19p, the peroxisomal membrane lipid transporter ABCD3, and catalase. Expression of PEX14p and ABCD3 was also enhanced in lungs from Mtb aerosol-infected mice. This is the first report that peroxisome-mediated control of ROS balance is essential for innate immune responses to Mtb but can be counteracted by the mycobacterial acetyltransferase Rv3034c. Thus, peroxisomes represent interesting targets for host-directed therapeutics to tuberculosis.}, language = {en} } @phdthesis{Bauer2010, author = {Bauer, Tanja}, title = {Untersuchung der Entstehung von intrazellul{\"a}rem oxidativem Stress unter dem Einfluss von oxidiertem low density lipoprotein}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51884}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Zusammenfassend konnte durch diese Arbeit gezeigt werden, dass es unter dem Einfluss von oxLDL unabh{\"a}ngig von der intrazellul{\"a}ren Aufnahme und der Aktivierung der NAD(P)H-Oxidase sowohl in glatten Muskelzellen als auch in Endothelzellen zur Bildung von oxidativem Stress kommt. Einzelne Untergruppen der dabei generierten ROS konnten nicht nachgewiesen werden. Zudem konnte die extrazellul{\"a}re Bildung von O2•- durch oxLDL gezeigt werden. In auf dieser Arbeit basierenden nachfolgenden Arbeiten konnte nachgewiesen werden, dass die oxLDL-immanenten oxidativen Reaktionsketten bzw. Emissionsketten von reaktiven Radikalen nicht alleinig {\"u}ber die Aufnahme des Partikels an die Zellen weitergegeben werden m{\"u}ssen, sondern dass der physische Kontakt von zellul{\"a}ren Lipidmembranen mit den oxLDL-Lipiden ausreicht.}, subject = {oxLDL}, language = {de} } @article{BankogluTschoppSchmittetal.2016, author = {Bankoglu, Ezgi Eyluel and Tschopp, Oliver and Schmitt, Johannes and Burkard, Philipp and Jahn, Daniel and Geier, Andreas and Stopper, Helga}, title = {Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0166956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146970}, pages = {e0166956}, year = {2016}, abstract = {Type 2 diabetes (T2DM) and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD) and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS) production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten), a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE) staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs) were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin.}, language = {en} }