@article{ZahoGhirlandoAlfonsoetal.2015, author = {Zaho, Huaying and Ghirlando, Rodolfo and Alfonso, Carlos and Arisaka, Fumio and Attali, Ilan and Bain, David L. and Bakhtina, Marina M. and Becker, Donald F. and Bedwell, Gregory J. and Bekdemir, Ahmet and Besong, Tabot M. D. and Birck, Catherine and Brautigam, Chad A. and Brennerman, William and Byron, Olwyn and Bzowska, Agnieszka and Chaires, Jonathan B. and Chaton, Catherine T. and Coelfen, Helmbut and Connaghan, Keith D. and Crowley, Kimberly A. and Curth, Ute and Daviter, Tina and Dean, William L. and Diez, Ana I. and Ebel, Christine and Eckert, Debra M. and Eisele, Leslie E. and Eisenstein, Edward and England, Patrick and Escalante, Carlos and Fagan, Jeffrey A. and Fairman, Robert and Finn, Ron M. and Fischle, Wolfgang and Garcia de la Torre, Jose and Gor, Jayesh and Gustafsson, Henning and Hall, Damien and Harding, Stephen E. and Hernandez Cifre, Jose G. and Herr, Andrew B. and Howell, Elizabeth E. and Isaac, Richard S. and Jao, Shu-Chuan and Jose, Davis and Kim, Soon-Jong and Kokona, Bashkim and Kornblatt, Jack A. and Kosek, Dalibor and Krayukhina, Elena and Krzizike, Daniel and Kusznir, Eric A. and Kwon, Hyewon and Larson, Adam and Laue, Thomas M. and Le Roy, Aline and Leech, Andrew P. and Lilie, Hauke and Luger, Karolin and Luque-Ortega, Juan R. and Ma, Jia and May, Carrie A. and Maynard, Ernest L. and Modrak-Wojcik, Anna and Mok, Yee-Foong and M{\"u}cke, Norbert and Nagel-Steger, Luitgard and Narlikar, Geeta J. and Noda, Masanori and Nourse, Amanda and Obsil, Thomas and Park, Chad K and Park, Jin-Ku and Pawelek, Peter D. and Perdue, Erby E. and Perkins, Stephen J. and Perugini, Matthew A. and Peterson, Craig L. and Peverelli, Martin G. and Piszczek, Grzegorz and Prag, Gali and Prevelige, Peter E. and Raynal, Bertrand D. E. and Rezabkova, Lenka and Richter, Klaus and Ringel, Alison E. and Rosenberg, Rose and Rowe, Arthur J. and Rufer, Arne C. and Scott, David J. and Seravalli, Javier G. and Solovyova, Alexandra S. and Song, Renjie and Staunton, David and Stoddard, Caitlin and Stott, Katherine and Strauss, Holder M. and Streicher, Werner W. and Sumida, John P. and Swygert, Sarah G. and Szczepanowski, Roman H. and Tessmer, Ingrid and Toth, Ronald T. and Tripathy, Ashutosh and Uchiyama, Susumu and Uebel, Stephan F. W. and Unzai, Satoru and Gruber, Anna Vitlin and von Hippel, Peter H. and Wandrey, Christine and Wang, Szu-Huan and Weitzel, Steven E and Wielgus-Kutrowska, Beata and Wolberger, Cynthia and Wolff, Martin and Wright, Edward and Wu, Yu-Sung and Wubben, Jacinta M. and Schuck, Peter}, title = {A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151903}, pages = {e0126420}, year = {2015}, abstract = {Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304\(\pm\)0.188) S (4.4\%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of \(\pm\)0.030 S (0.7\%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.}, language = {en} } @phdthesis{Hermann2019, author = {Hermann, Stephanie}, title = {Adenosindiphosphat-vermittelte Funktion und Expression von purinergen Rezeptoren in gewaschenen humanen Thrombozyten}, doi = {10.25972/OPUS-18520}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185201}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Nach der Pr{\"a}paration von gewaschenen Thrombozyten, einem wichtigen Ausgangsmaterial f{\"u}r die experimentelle Forschung oder f{\"u}r die Transfusionsmedizin, tritt bekannterweise ein zunehmender Verlust der ADP-vermittelten Aggregationsf{\"a}higkeit ein. Die verminderte Funktionsf{\"a}higkeit von Thromboyzten nach dem Waschvorgang kann somit auch experimentelle Ergebnisse beeinflussten. Allerdings sind die daf{\"u}r verantwortlichen molekularen Mechanismen bisher nicht aufgekl{\"a}rt, sodass in dieser Dissertationsarbeit molekulare sowie auch funktionelle Vorg{\"a}nge untersucht wurden, die zum bekannten Ph{\"a}nomen des raschen Verlustes der ADP-vermittelten Aggregationsf{\"a}higkeit gewaschener Thrombozyten f{\"u}hren. Die Wirkung von ADP wird {\"u}ber die drei purinergen Rezeptoren P2Y1, P2X1 und P2Y12 vermittelt wird. Daher wurde zun{\"a}chst die ADP-induzierte Aggregationsf{\"a}higkeit alleine bzw. unter Kostimulation mit Epinephrin oder Serotonin - zwei Induktoren, deren Rezeptoren mit analogen Signalwegen wie die ADP-Rezeptoren P2Y1 bzw. P2Y12 gekoppelt sind - bestimmt. Um Hinweise zu erhalten, wie die Abnahme der ADP-vermittelten Reaktivit{\"a}t von gewaschenen Thrombozyten mit der purinergen Rezeptorexpression und -distribution sowie mit der nachgeschalteten Signalweiterleitung im Zusammenhang steht, wurde zudem die Expression purinerger Rezeptoren auf der Thrombozytenoberfl{\"a}che bzw. die Konzentration von purinergen Rezeptoren im Zytosol gewaschener Thrombozyten mittels Durchflusszytometrie bzw. ELISA gemessen. Es zeigte sich, dass die Funktion der den purinergen Rezeptoren nachgeschalteten Signalwege w{\"a}hrend der Lagerungszeit zunehmend beeintr{\"a}chtigt wird, aber zumindest teilweise erhalten bleibt, wie anhand von Effekten durch Kostimulation mit den Induktoren Epinephrin und Serotonin gezeigt werden konnte. Die Distribution der Rezeptoren zwischen der Thrombozytenoberfl{\"a}che und den intrazellul{\"a}ren Kompartimenten unterliegt komplexen Prozessen, die induktorabh{\"a}ngig reguliert sind. Eine initiale Zunahme der Expression von ADP-Rezeptoren w{\"a}hrend der Lagerung von gewaschenen Thrombozyten geht dabei nicht einher mit der Aufrechterhaltung der ADP-induzierten Aggregation. In der Schlussfolgerung ist die fortschreitende Degeneration der ADP-vermittelten Aggregation - neben einem R{\"u}ckgang der Rezeptorexpression nach mehr als einer Stunde Lagerungszeit - vor allem auf einen funktionellen Verlust der purinergen Rezeptoren zur{\"u}ckzuf{\"u}hren.}, subject = {ADP}, language = {de} } @article{ShityakovSalvadorPastorinetal.2015, author = {Shityakov, Sergey and Salvador, Ellaine and Pastorin, Giorgia and F{\"o}rster, Carola}, title = {Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate}, series = {International Journal of Nanomedicine}, volume = {10}, journal = {International Journal of Nanomedicine}, doi = {10.2147/IJN.S68429}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149233}, pages = {1703-1713}, year = {2015}, abstract = {In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCN-TFITC rapid dissociation as an intermediate phase.}, language = {en} } @article{MenekseRennerMahlmeisteretal.2020, author = {Menekse, Kaan and Renner, Rebecca and Mahlmeister, Bernhard and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Bowl-shaped naphthalimide-annulated corannulene as nonfullerene acceptor in organic solar cells}, series = {Organic Materials}, volume = {2}, journal = {Organic Materials}, number = {3}, issn = {2625-1825}, doi = {10.1055/s-0040-1714283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299095}, pages = {229-234}, year = {2020}, abstract = {An electron-poor bowl-shaped naphthalimide-annulated corannulene with branched alkyl residues in the imide position was synthesized by a palladium-catalyzed cross-coupling annulation sequence. This dipolar compound exhibits strong absorption in the visible range along with a low-lying LUMO level at -3.85 eV, enabling n-type charge transport in organic thin-film transistors. Furthermore, we processed inverted bulk-heterojunction solar cells in combination with the two donor polymers PCE-10 and PM6 to achieve open-circuit voltages up to 1.04 V. By using a blend of the self-assembled naphthalimide-annulated corannulene and PCE-10, we were able to obtain a power conversion efficiency of up to 2.1\%, which is to the best of our knowledge the highest reported value for a corannulene-based organic solar cell to date.}, language = {en} } @article{KuemmelLindenberger2020, author = {K{\"u}mmel, Reiner and Lindenberger, Dietmar}, title = {Energy in Growth Accounting and the Aggregation of Capital and Output}, series = {Biophysical Economics and Sustainability}, volume = {5}, journal = {Biophysical Economics and Sustainability}, doi = {10.1007/s41247-020-00068-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241135}, year = {2020}, abstract = {We review the physical aggregation of value added and capital in terms of work performance and information processing and its relation to the deflated monetary time series of output and capital. In growth accounting it complements the time series of labor and energy, measured in hours worked per year and kilowatt-hours consumed per year, respectively. This aggregation is the conceptual basis on which those energy-dependent production functions have been constructed that reproduce economic growth of major industrial countries in the 20th century with small residuals and output elasticities that are for energy much larger and for labor much smaller than the cost shares of these factors. Accounting for growth in such a way, which deviates from that of mainstream economics, may serve as a first step towards integrating the First and the Second Law of Thermodynamics into economics.}, language = {en} } @article{SchulzWuerthner2022, author = {Schulz, Alexander and W{\"u}rthner, Frank}, title = {Folding-induced fluorescence enhancement in a series of merocyanine hetero-folda-trimers}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {2}, doi = {10.1002/anie.202114667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256582}, year = {2022}, abstract = {Many dyes suffer from fast non-radiative decay pathways, thereby showing only short-lived excited states and weak photoluminescence. Here we show a pronounced fluorescence enhancement for a weakly fluorescent merocyanine (MC) dye by being co-facially stacked to other dyes in hetero-folda-trimer architectures. By means of fluorescence spectroscopy (lifetime, quantum yield) the fluorescence enhancement was explained by the rigidification of the emitting chromophore in the defined foldamer architecture and the presence of a non-forbidden lowest exciton state in H-coupled hetero-aggregates. This folding-induced fluorescence enhancement (FIFE) for specific sequences of π-stacked dyes points at a viable strategy toward improved fluorophores that relates to the approach used by nature in the green fluorescent protein (GFP).}, language = {en} } @phdthesis{Huber2007, author = {Huber, Valerie}, title = {Selbstorganisation von semisynthetischen Zinkchlorinen zu biomimetischen Lichtsammelsystemen und definierten Nanostrukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24517}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Selbstorganisation von Zinkchlorin-Farbstoffen, welche sich strukturell von Chlorophyllen ableiten. Im Gegensatz zu allen anderen bakteriellen und pflanzlichen Lichtsammelpigmenten ist es den Bakteriochlorophyllen c, d und e der Lichtsammelsysteme gr{\"u}ner phototropher Bakterien m{\"o}glich, allein durch nichtkovalente Wechselwirkungen zwischen den Farbstoff-Molek{\"u}len, ohne die Beteiligung von Proteinen, r{\"o}hrenf{\"o}rmige Antennensysteme auszubilden, welche die am dichtest gepackten und effizientesten Lichtsammelsysteme in der Natur darstellen. Um einen Betrag zur Aufkl{\"a}rung dieser biologisch wichtigen Aggregate zu leisten, wurden im ersten Teil dieser Arbeit Zinkchlorine als Modellverbindungen f{\"u}r BChl c hergestellt. Mit den neu synthetisierten Zinkchlorinen ist es gelungen, Modellsysteme der nat{\"u}rlichen BChl-Selbstorganisate herzustellen, welche sich im Gegensatz zu den bisher in der Literatur beschriebenen Zinkchlorin-Aggregaten durch eine gute und dauerhafte L{\"o}slichkeit auszeichnen. Diese Eigenschaft erlaubte es sowohl spektroskopische als auch mikroskopische Untersuchungen zur Aufkl{\"a}rung der Aggregatstruktur durchzuf{\"u}hren. Durch Rasterkraftmikroskopie an den Zinkchlorin Aggregaten konnte erstmals ein mikroskopischer Beweis der stabf{\"o}rmigen Struktur von Aggregaten dieser Substanzklasse erhalten werden. Der zweite Teil dieser Arbeit besch{\"a}ftigt sich mit Zinkchlorinen, denen aufgrund einer methylierten 31-Hydroxy-Gruppe die F{\"a}higkeit zur R{\"o}hrenbildung fehlt, die aber durch Koordinationsbindungen und p-p-Wechselwirkungen weiterhin Stapel bilden k{\"o}nnen. Temperaturabh{\"a}ngige UV/Vis- und CD-spektroskopische Studien offenbarten die reversible Bildung von l{\"o}slichen, chiralen Zinkchlorin-Stapelaggregaten. Rasterkraft- und rastertunnelmikroskopische Untersuchungen zeigen die Bildung von zwei Typen p-gestapelter Aggregate auf hoch geordnetem Graphit.}, subject = {Farbstoff}, language = {de} } @phdthesis{Gershberg2016, author = {Gershberg, Jana}, title = {Self-assembled Perylene Bisimide Dimers and their Interaction with Double-stranded DNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136725}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The self-assembly of molecules based on π-π-interactions and hydrogen bonding is of significant importance in nature. These processes enable the formation of complex supramolecular structures with diverse functions. For the transfer of the concepts from nature to artificial supramolecular structures, a basic understanding of those processes is needed. For this purpose, π-conjugated aromatic molecules with an easy synthetic access are suitable as their functionalities can be changed effortless. Perylene bisimide (PBIs) dyes are attractive candidates since they fulfill these requirements owing to their tendency to self-assemble in solution due to their large aromatic π-surfaces. Furthermore, the changes of the optical properties (for instance absorption, emission or circular dichroism) of PBI dyes, caused by their self-assembly, are easy to study experimentally. Structural variations of PBI dyes including additional non-covalent interactions, such as hydro-gen bonding, enable to direct their self-assembly process. Thus, the formation of interesting su-pramolecular structures of PBI dyes could be realized, although, often of undefined size. The aim of this thesis was to develop strategies to restrict the aggregate size of PBI dyes. Therefore, de-fined structural features of PBI molecules were combined and a variation of external influences such as solvent and concentration included. Furthermore, DNA was utilized as a template for the limitation of the aggregate size of PBI dyes. Chapters 1 and 2 provide general information and describe examples from literature which are necessary to understand the following experimental work. The first chapter is based on the inter-actions of various molecules with DNA. Therefore, DNA is considered as a supramolecular biom-acromolecule containing specific structural and functional features to interact with small mole-cules. Afterwards, the main interaction modes of small molecules with DNA such as electrostatic interaction, intercalation and groove binding with corresponding examples are discussed. Among all techniques applied to study the interaction of ligands with DNA, UV/Vis absorption, fluores-cence and circular dichroism spectroscopy were described in detail. At the end of this chapter, examples of already pre-associated systems showing interactions with DNA are presented. The second chapter is focused on the determination and mathematic evaluation of the self-assembly processes. The simplest models such as monomer-dimer and isodesmic model are de-scribed and supplemented by examples. Furthermore, the simplest modification of the isodesmic model, the K2-K model, is presented. Additionally, experimental problems, which may arise dur-ing the investigations of the self-assembly processes, are addressed. For the description of the entire self-assembly process, a sufficiently large concentration range and an appropriate measure-ment method that is sensitive in this concentration range is necessary. Furthermore, the full transi-tion from the monomeric to the aggregated species has to be spectroscopically ascertainable. This enables an accurate mathematic evaluation of the self-assembly process and provides meaningful binding constants. The self-assembly pathway can be controlled by the variation of solvent, con-centration or temperature. However, this pathway can also be directed by a rational design of the molecular structure of the considered system. For example, a specific interplay of π-π-interactions and hydrogen bonding may promote isodesmic as well as cooperative growth into large struc-tures. The main focus of this thesis is to develop strategies to control the aggregate size of PBI dyes (Chapter 3). For this purpose, a PBI scaffold was designed which contains hydrogen bonding amide functions at the imide positions derived from the amino acid L-alanine and solubilizing side groups in the periphery (Figure 81). The variations of the residues R/R' range from didodecylox-yphenyl, didodecylphenyl, dioligo(ethylene glycol)phenyl to branched and linear alkyl chains. The most extensive study of the aggregation behavior was performed for the PBI dye 5. Concen-tration-dependent 1H NMR and UV/Vis absorption measurements clearly revealed the formation of dimers in chloroform. Further investigations by means of 2D NMR, VPO and ITC confirmed the exclusive presence of dimer aggregates of PBI 5 in the investigated concentration range. Mo-lecular modelling studies, supported by NMR and FT-IR experiments, provided structural reasons for the absence of further growth into larger aggregates. The specific combination of π-π interac-tions and hydrogen bonds between the NH groups of the amide groups and the carbonyl oxygen atoms of the PBI core are decisive for the formation of the discrete dimer stack (see Figure 82). The investigations of the aggregation behavior of PBIs 6-9 were less extensive but consistent with the results obtained for PBI 5. However, the determined binding constants vary over a considera-ble range of 1.1 x 102 M-1 (PBI 8) to 1.4 x 104 M-1 (PBI 5). These differences could be attributed to structural variations of the dyes. The electron-rich phenyl substituent promoted the aggregation tendency of PBIs 5-7 compared with 8 and 9 that carry only alkyl side chains. Thus, the π-π in-teractions of bay-unsubstituted PBI cores in combination with hydrogen bonding of the amide functions control the formation of discrete dimers of these PBI dyes. The variation of conditions, such as solvent, change the aggregation behavior of PBI dyes. In the solvents toluene and/or methylcyclohexane, anti-cooperative growth into larger aggregates of PBI 5 was observed (Chapter 4). The important feature of this self-assembly process is the absence of isosbestic points over the whole concentration range in the UV/Vis absorption measurements. The preference for the dimeric species of PBI 5 remained in both solvents as well as in mixtures of them, but upon increasing the concentration these dimers self-assemble into larger aggregates. An important feature of the self-assembly process is the preferred formation of even-numbered aggregates compared to the odd-numbered ones (see Figure 83). Although, the conventional K2-K model provides plausible binding constants, it is not capable to describe the aggregation behavior adequately, since it considers a continuous size distribution. The gradual aggregation process over dimers, tetramers, hexamers, etc. was therefore analyzed with a newly developed K2-K model for anti-cooperative supramolecular polymerization. By the global analysis of the UV/Vis absorption spectra a very good agreement between the experimental and simulated spectra, which were based on the new K2-K model, was obtained. Furthermore, the calculated UV/Vis absorption spectra of a dimer and an aggregate highlighted the most important structural differences. The absorption spectrum of the dimer still has a pronounced vibronic structure which gets lost in the spectrum of the aggregate. In another part of this work, a series of water soluble PBI dyes were described which contain similar PBI scaffolds as PBIs 5-8 (Chapter 5). These PBI dyes self-assemble into similar dimer aggregates in water due to their positively charged side chains causing electrostatic repulsion be-tween the molecules (see Figure 84). Here, however, the self-assembly behavior has not been studied thoroughly in water due to the similarities of already reported PBI dyes. Instead, the focus here is on the characterization of the interactions of these dyes with DNA/RNA. The comprehensive studies using thermal denaturation experiments showed the high stability of these PBI/polynucleotide complexes. The spermine-functionalized PBI dyes having six positive charges showed strong interactions with DNA/RNA which was expressed in a signif-icant increase of the melting temperatures of DNA/RNA (ΔTm values between 7 and > 35 ° C). The dioxa analogues containing only two positive charges had lower enhancement of the melting temperature of DNA/RNA (ΔTm values between 3 and 30 ° C). A similar trend has been observed in the fluorimetric titrations. The spermine-functionalized PBI dyes showed high binding con-stants (log Ks = 9.2 - 9.8), independently of the used polynucleotides. In contrast, the dioxa ana-logues displayed smaller binding constants (log Ks = 6.5 - 7.9) without any correlation between binding affinity and binding strength of the PBI dyes and the applied polynucleotides. The CD-spectroscopic measurements revealed significant differences in the binding properties of the dyes with DNA/RNA. They were dependent on the steric hindrance of the amino acid residues at the imide position and their configuration on one side and the grooves properties of ds-DNA/RNA on the other side. The spectroscopic results confirmed the formation of excitonically coupled PBI dimers in the minor groove of ds-DNA and the major groove of ds-RNA. Depending on the se-quence, the grooves of the polynucleotides provide different amount of space for embedding molecules. The guanine amino groups protrude into the minor groove of the polynucleotide poly(dG-dC)2 increasing the steric hindrance, which is not the case for poly(dA-dT)2. Molecular modeling studies showed that the PBI dimers penetrate deeper into the groove of poly(dA-dT)2 due to the absence of the steric hindrance, in comparison to the groove of poly(dG-dC)2 (see Figure 85).}, subject = {Perylentetracarbons{\"a}urederivate}, language = {en} } @article{RennerStolteWuerthner2020, author = {Renner, Rebecca and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Self-Assembly of bowl-shaped naphthalimide-annulated corannulene}, series = {ChemistryOpen}, volume = {9}, journal = {ChemistryOpen}, number = {1}, doi = {10.1002/open.201900291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204396}, pages = {32-39}, year = {2020}, abstract = {The self-assembly of a bowl-shaped naphthalimide-annulated corannulene of high solubility has been studied in a variety of solvents by NMR and UV/Vis spectroscopy. Evaluation by the anti-cooperative K\(_2\)-K model revealed the formation of supramolecular dimers of outstanding thermodynamic stability. Further structural proof for the almost exclusive formation of dimers over extended aggregates is demonstrated by atomic force microscopy (AFM) and diffusion ordered spectroscopy (DOSY) measurements as well as by theoretical calculations. Thus, herein we present the first report of a supramolecular dimer of an annulated corannulene derivative in solution and discuss its extraordinarily high thermodynamic stability with association constants up to > 10\(^6\)M\(^-\) \(^1\) in methylcyclohexane, which is comparable to the association constants given for planar phthalocyanine and perylene bisimide dyes.}, language = {en} }