@article{RadakovicReboredoHelmetal.2017, author = {Radakovic, D. and Reboredo, J. and Helm, M. and Weigel, T. and Sch{\"u}rlein, S. and Kupczyk, E. and Leyh, R. G. and Walles, H. and Hansmann, J.}, title = {A multilayered electrospun graft as vascular access for hemodialysis}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0185916}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159102}, pages = {e0185916}, year = {2017}, abstract = {Despite medical achievements, the number of patients with end-stage kidney disease keeps steadily raising, thereby entailing a high number of surgical and interventional procedures to establish and maintain arteriovenous vascular access for hemodialysis. Due to vascular disease, aneurysms or infection, the preferred access—an autogenous arteriovenous fistula—is not always available and appropriate. Moreover, when replacing small diameter blood vessels, synthetic vascular grafts possess well-known disadvantages. A continuous multilayered gradient electrospinning was used to produce vascular grafts made of collagen type I nanofibers on luminal and adventitial graft side, and poly-ɛ-caprolactone as medial layer. Therefore, a custom-made electrospinner with robust environmental control was developed. The morphology of electrospun grafts was characterized by scanning electron microscopy and measurement of mechanical properties. Human microvascular endothelial cells were cultured in the graft under static culture conditions and compared to cultures obtained from dynamic continuous flow bioreactors. Immunofluorescent analysis showed that endothelial cells form a continuous luminal layer and functional characteristics were confirmed by uptake of acetylated low-density-lipoprotein. Incorporation of vancomycin and gentamicin to the medial graft layer allowed antimicrobial inhibition without exhibiting an adverse impact on cell viability. Most striking a physiological hemocompatibility was achieved for the multilayered grafts.}, language = {en} } @article{BochSpiessHeinzetal.2019, author = {Boch, Tobias and Spiess, Birgit and Heinz, Werner and Cornely, Oliver A. and Schwerdtfeger, Rainer and Hahn, Joachim and Krause, Stefan W. and Duerken, Matthias and Bertz, Hartmut and Reuter, Stefan and Kiehl, Michael and Claus, Bernd and Deckert, Peter Markus and Hofmann, Wolf-Karsten and Buchheidt, Dieter and Reinwald, Mark}, title = {Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis}, series = {Mycoses}, volume = {62}, journal = {Mycoses}, number = {11}, doi = {10.1111/myc.12983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214065}, pages = {1035 -- 1042}, year = {2019}, abstract = {Invasive aspergillosis (IA) is a severe complication in immunocompromised patients. Early diagnosis is crucial to decrease its high mortality, yet the diagnostic gold standard (histopathology and culture) is time-consuming and cannot offer early confirmation of IA. Detection of IA by polymerase chain reaction (PCR) shows promising potential. Various studies have analysed its diagnostic performance in different clinical settings, especially addressing optimal specimen selection. However, direct comparison of different types of specimens in individual patients though essential, is rarely reported. We systematically assessed the diagnostic performance of an Aspergillus-specific nested PCR by investigating specimens from the site of infection and comparing it with concurrent blood samples in individual patients (pts) with IA. In a retrospective multicenter analysis PCR was performed on clinical specimens (n = 138) of immunocompromised high-risk pts (n = 133) from the site of infection together with concurrent blood samples. 38 pts were classified as proven/probable, 67 as possible and 28 as no IA according to 2008 European Organization for Research and Treatment of Cancer/Mycoses Study Group consensus definitions. A considerably superior performance of PCR from the site of infection was observed particularly in pts during antifungal prophylaxis (AFP)/antifungal therapy (AFT). Besides a specificity of 85\%, sensitivity varied markedly in BAL (64\%), CSF (100\%), tissue samples (67\%) as opposed to concurrent blood samples (8\%). Our results further emphasise the need for investigating clinical samples from the site of infection in case of suspected IA to further establish or rule out the diagnosis.}, language = {en} } @article{SchickBaarBrunoetal.2015, author = {Schick, Martin Alexander and Baar, Wolfgang and Bruno, Raphael Romano and Wollborn, Jakob and Held, Christopher and Schneider, Reinhard and Flemming, Sven and Schlegel, Nicolas and Roewer, Norbert and Neuhaus, Winfried and Wunder, Christian}, title = {Balanced hydroxyethylstarch (HES 130/0.4) impairs kidney function in-vivo without inflammation}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0137247}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126068}, pages = {e0137247}, year = {2015}, abstract = {Volume therapy is a standard procedure in daily perioperative care, and there is an ongoing discussion about the benefits of colloid resuscitation with hydroxyethylstarch (HES). In sepsis HES should be avoided due to a higher risk for acute kidney injury (AKI). Results of the usage of HES in patients without sepsis are controversial. Therefore we conducted an animal study to evaluate the impact of 6\% HES 130/0.4 on kidney integrity with sepsis or under healthy conditions Sepsis was induced by standardized Colon Ascendens Stent Peritonitis (sCASP). sCASP-group as well as control group (C) remained untreated for 24 h. After 18 h sCASP+HES group (sCASP+VOL) and control+HES (C+VOL) received 50 ml/KG balanced 6\% HES (VOL) 130/0.4 over 6h. After 24h kidney function was measured via Inulin- and PAH-Clearance in re-anesthetized rats, and serum urea, creatinine (crea), cystatin C and Neutrophil gelatinase-associated lipocalin (NGAL) as well as histopathology were analysed. In vitro human proximal tubule cells (PTC) were cultured +/- lipopolysaccharid (LPS) and with 0.1-4.0\% VOL. Cell viability was measured with XTT-, cell toxicity with LDH-test. sCASP induced severe septic AKI demonstrated divergent results regarding renal function by clearance or creatinine measure focusing on VOL. Soleley HES (C+VOL) deteriorated renal function without sCASP. Histopathology revealed significantly derangements in all HES groups compared to control. In vitro LPS did not worsen the HES induced reduction of cell viability in PTC cells. For the first time, we demonstrated, that application of 50 ml/KG 6\% HES 130/0.4 over 6 hours induced AKI without inflammation in vivo. Severity of sCASP induced septic AKI might be no longer susceptible to the way of volume expansion}, language = {en} } @article{RudelPrustySiegletal.2013, author = {Rudel, Thomas and Prusty, Bhupesh K. and Siegl, Christine and Hauck, Petra and Hain, Johannes and Korhonen, Suvi J. and Hiltunen-Back, Eija and Poulakkainen, Mirja}, title = {Chlamydia trachomatis Infection Induces Replication of Latent HHV-6}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0061400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96731}, year = {2013}, abstract = {Human herpesvirus-6 (HHV-6) exists in latent form either as a nuclear episome or integrated into human chromosomes in more than 90\% of healthy individuals without causing clinical symptoms. Immunosuppression and stress conditions can reactivate HHV-6 replication, associated with clinical complications and even death. We have previously shown that co-infection of Chlamydia trachomatis and HHV-6 promotes chlamydial persistence and increases viral uptake in an in vitro cell culture model. Here we investigated C. trachomatis-induced HHV-6 activation in cell lines and fresh blood samples from patients having Chromosomally integrated HHV-6 (CiHHV-6). We observed activation of latent HHV-6 DNA replication in CiHHV-6 cell lines and fresh blood cells without formation of viral particles. Interestingly, we detected HHV-6 DNA in blood as well as cervical swabs from C. trachomatis-infected women. Low virus titers correlated with high C. trachomatis load and vice versa, demonstrating a potentially significant interaction of these pathogens in blood cells and in the cervix of infected patients. Our data suggest a thus far underestimated interference of HHV-6 and C. trachomatis with a likely impact on the disease outcome as consequence of co-infection.}, language = {en} } @article{KlughammerDittrichBlometal.2017, author = {Klughammer, Johanna and Dittrich, Marcus and Blom, Jochen and Mitesser, Vera and Vogel, Ulrich and Frosch, Matthias and Goesmann, Alexander and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0169892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159547}, pages = {e0169892}, year = {2017}, abstract = {Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.}, language = {en} } @article{SchumannEberleinMuhtadietal.2018, author = {Schumann, Sarah and Eberlein, Uta and Muhtadi, Razan and Lassmann, Michael and Scherthan, Harry}, title = {DNA damage in leukocytes after internal ex-vivo irradiation of blood with the α-emitter Ra-223}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {2286}, doi = {10.1038/s41598-018-20364-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175596}, year = {2018}, abstract = {Irradiation with high linear energy transfer α-emitters, like the clinically used Ra-223 dichloride, severely damages cells and induces complex DNA damage including closely spaced double-strand breaks (DSBs). As the hematopoietic system is an organ-at-risk for the treatment, knowledge about Ra-223-induced DNA damage in blood leukocytes is highly desirable. Therefore, 36 blood samples from six healthy volunteers were exposed ex-vivo (in solution) to different concentrations of Ra-223. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the decay, ranging from 0 to 142 mGy. γ-H2AX + 53BP1 co-staining and analysis was performed in leukocytes isolated from the irradiated blood samples. For DNA damage quantification, leukocyte samples were screened for occurrence of α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values, being in agreement with a negligible β-contribution (3.7\%) to the total absorbed dose to the blood. Our calibration curve will contribute to the biodosimetry of Ra-223-treated patients and early after incorporation of α-emitters.}, language = {en} } @article{TsonevaStritzkerBedenketal.2015, author = {Tsoneva, Desislava and Stritzker, Jochen and Bedenk, Kristina and Zhang, Qian and Cappello, Joseph and Fischer, Utz and Szalay, Aladar A.}, title = {Drug-encoded Biomarkers for Monitoring Biological Therapies}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0137573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125265}, pages = {e0137573}, year = {2015}, abstract = {Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA) and Staphylococcus sp. RLH1 (GusPlus), and the luciferase from Gaussia princeps (GLuc). The three genes encoding these proteins were inserted individually into vaccinia virus GLV-1h68 genome under the control of an identical promoter. The three resulting recombinant viruses were used to infect tumor cells in cultures and human tumor xenografts in nude mice. In contrast to the actively secreted GLuc, the cytoplasmic glucuronidases GusA and GusPlus were released into the supernatants only as a result of virus-mediated oncolysis. GusPlus resulted in the most sensitive detection of enzyme activity under controlled assay conditions in samples containing as little as 1 pg/ml of GusPlus, followed by GusA (25 pg/ml) and GLuc (≥375 pg/ml). Unexpectedly, even though GusA had a lower specific activity compared to GusPlus, the substrate conversion in the serum of tumor-bearing mice injected with the GusA-encoding virus strains was substantially higher than that of GusPlus. This was attributed to a 3.2 fold and 16.2 fold longer half-life of GusA in the blood stream compared to GusPlus and GLuc respectively, thus a more sensitive monitor of virus replication than the other two enzymes. Due to the good correlation between enzymatic activity of expressed marker gene and virus titer, we conclude that the amount of the biomarker protein in the body fluid semiquantitatively represents the amount of virus in the infected tumors which was confirmed by low light imaging. We found GusA to be the most reliable biomarker for monitoring oncolytic virotherapy among the three tested markers.}, language = {en} } @article{ThalSmetakHayashietal.2022, author = {Thal, Serge C. and Smetak, Manuel and Hayashi, Kentaro and F{\"o}rster, Carola Y.}, title = {Hemorrhagic cerebral insults and secondary Takotsubo syndrome: findings in a novel in vitro model using human blood samples}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911557}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288305}, year = {2022}, abstract = {Intracranial hemorrhage results in devastating forms of cerebral damage. Frequently, these results also present with cardiac dysfunction ranging from ECG changes to Takotsubo syndrome (TTS). This suggests that intracranial bleeding due to subarachnoid hemorrhage (SAH) disrupts the neuro-cardiac axis leading to neurogenic stress cardiomyopathy (NSC) of different degrees. Following this notion, SAH and secondary TTS could be directly linked, thus contributing to poor outcomes. We set out to test if blood circulation is the driver of the brain-heart axis by investigating serum samples of TTS patients. We present a novel in vitro model combining SAH and secondary TTS to mimic the effects of blood or serum, respectively, on blood-brain barrier (BBB) integrity using in vitro monolayers of an established murine model. We consistently demonstrated decreased monolayer integrity and confirmed reduced Claudin-5 and Occludin levels by RT-qPCR and Western blot and morphological reorganization of actin filaments in endothelial cells. Both tight junction proteins show a time-dependent reduction. Our findings highlight a faster and more prominent disintegration of BBB in the presence of TTS and support the importance of the bloodstream as a causal link between intracerebral bleeding and cardiac dysfunction. This may represent potential targets for future therapeutic inventions in SAH and TTS.}, language = {en} } @article{HaertleMaierhoferBoecketal.2017, author = {Haertle, Larissa and Maierhofer, Anna and B{\"o}ck, Julia and Lehnen, Harald and B{\"o}ttcher, Yvonne and Bl{\"u}her, Matthias and Schorsch, Martin and Potabattula, Ramya and El Hajj, Nady and Appenzeller, Silke and Haaf, Thomas}, title = {Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0184030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170433}, pages = {e0184030}, year = {2017}, abstract = {Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50\% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2-66\%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0-15\%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals.}, language = {en} } @article{NordbeckBoenhofHilleretal.2013, author = {Nordbeck, Peter and B{\"o}nhof, Leoni and Hiller, Karl-Heinz and Voll, Sabine and Arias-Loza, Paula and Seidlmaier, Lea and Williams, Tatjana and Ye, Yu-Xiang and Gensler, Daniel and Pelzer, Theo and Ertl, Georg and Jakob, Peter M. and Bauer, Wolfgang R. and Ritter, Oliver}, title = {Impact of Thoracic Surgery on Cardiac Morphology and Function in Small Animal Models of Heart Disease: A Cardiac MRI Study in Rats}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0068275}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130064}, pages = {e68275}, year = {2013}, abstract = {Background Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. Methods Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. Results Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. Conclusion Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective animal studies and transferring these findings to conditions in patients.}, language = {en} }