@phdthesis{Matera2022, author = {Matera, Gianluca}, title = {Global mapping of RNA-RNA interactions in \(Salmonella\) via RIL-seq}, doi = {10.25972/OPUS-26877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {RNA represents one of the most abundant macromolecules in both eukaryotic and prokaryotic cells. Since the discovery that RNA could play important gene regulatory functions in the physiology of a cell, small regulatory RNAs (sRNAs) have been at the center of molecular biology studies. Functional sRNAs can be independently transcribed or derived from processing of mRNAs and other non-coding regions and they often associate with RNA-binding proteins (RBPs). Ever since the two major bacterial RBPs, Hfq and ProQ, were identified, the way we approach the identification and characterization of sRNAs has drastically changed. Initially, a single sRNA was annotated and its function studied with the use of low-throughput biochemical techniques. However, the development of RNA-seq techniques over the last decades allowed for a broader identification of sRNAs and their functions. The process of studying a sRNA mainly focuses on the characterization of its interacting RNA partner(s) and the consequences of this binding. By using RNA interaction by ligation and sequencing (RIL-seq), the present thesis aimed at a high-throughput mapping of the Hfq-mediated RNA-RNA network in the major human pathogen Salmonella enterica. RIL-seq was at first performed in early stationary phase growing bacteria, which enabled the identification of ~1,800 unique interactions. In- depth analysis of such complex network was performed with the aid of a newly implemented RIL-seq browser. The interactome revealed known and new interactions involving sRNAs and genes part of the envelope regulon. A deeper investigation led to the identification of a new RNA sponge of the MicF sRNA, namely OppX, involved in establishing a cross-talk between the permeability at the outer membrane and the transport capacity at the periplasm and the inner membrane. Additionally, RIL-seq was applied to Salmonella enterica grown in SPI-2 medium, a condition that mimicks the intracellular lifestyle of this pathogen, and finally extended to in vivo conditions during macrophage infection. Collectively, the results obtained in the present thesis helped unveiling the complexity of such RNA networks. This work set the basis for the discovery of new mechanisms of RNA-based regulation, for the identification of a new physiological role of RNA sponges and finally provided the first resource of RNA interactions during infection conditions in a major human pathogen.}, subject = {Small RNA}, language = {en} } @phdthesis{Hoer2020, author = {H{\"o}r, Jens}, title = {Discovery of RNA/protein complexes by Grad-seq}, doi = {10.25972/OPUS-21181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211811}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Complex formation between macromolecules constitutes the foundation of most cellular processes. Most known complexes are made up of two or more proteins interacting in order to build a functional entity and therefore enabling activities which the single proteins could otherwise not fulfill. With the increasing knowledge about noncoding RNAs (ncRNAs) it has become evident that, similar to proteins, many of them also need to form a complex to be functional. This functionalization is usually executed by specific or global RNA-binding proteins (RBPs) that are specialized binders of a certain class of ncRNAs. For instance, the enterobacterial global RBPs Hfq and ProQ together bind >80 \% of the known small regulatory RNAs (sRNAs), a class of ncRNAs involved in post-transcriptional regulation of gene expression. However, identification of RNA-protein interactions so far was performed individually by employing low-throughput biochemical methods and thereby hindered the discovery of such interactions, especially in less studied organisms such as Gram-positive bacteria. Using gradient profiling by sequencing (Grad-seq), the present thesis aimed to establish high-throughput, global RNA/protein complexome resources for Escherichia coli and Streptococcus pneumoniae in order to provide a new way to investigate RNA-protein as well as protein-protein interactions in these two important model organisms. In E. coli, Grad-seq revealed the sedimentation profiles of 4,095 (∼85 \% of total) transcripts and 2,145 (∼49 \% of total) proteins and with that reproduced its major ribonucleoprotein particles. Detailed analysis of the in-gradient distribution of the RNA and protein content uncovered two functionally unknown molecules—the ncRNA RyeG and the small protein YggL—to be ribosomeassociated. Characterization of RyeG revealed it to encode for a 48 aa long, toxic protein that drastically increases lag times when overexpressed. YggL was shown to be bound by the 50S subunit of the 70S ribosome, possibly indicating involvement of YggL in ribosome biogenesis or translation of specific mRNAs. S. pneumoniae Grad-seq detected 2,240 (∼88 \% of total) transcripts and 1,301 (∼62 \% of total) proteins, whose gradient migration patterns were successfully reconstructed, and thereby represents the first RNA/protein complexome resource of a Gram-positive organism. The dataset readily verified many conserved major complexes for the first time in S. pneumoniae and led to the discovery of a specific interaction between the 3'!5' exonuclease Cbf1 and the competence-regulating ciadependent sRNAs (csRNAs). Unexpectedly, trimming of the csRNAs by Cbf1 stabilized the former, thereby promoting their inhibitory function. cbf1 was further shown to be part of the late competence genes and as such to act as a negative regulator of competence.}, subject = {Multiproteinkomplex}, language = {en} }