@phdthesis{ReuterWeissenberger2022, author = {Reuter-Weissenberger, Philipp}, title = {The role of a fungal-specific transcription regulator on vacuolar biology and host interaction in \(Candida\) \(albicans\)}, doi = {10.25972/OPUS-25928}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259287}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Microorganisms that colonize the human body face large fluctuations in their surroundings. Therefore, those microbes developed sophisticated mechanisms that allow them to adapt their cell biology and maintain cellular homeostasis. One organelle vital to preserve cell physiology is the vacuole. The vacuole exhibits a wide range of functions and is able to adjust itself in response to both external and internal stimuli. Moreover, it plays an important role in host interaction and virulence in fungi such as Candida albicans. Despite this connection, only a few regulatory proteins have been described to modulate vacuolar biology in fungal pathogens. Furthermore, whether such regulation alters fungus-host interplay remains largely unknown. This thesis focuses on the characterization of ZCF8, a fungus-specific transcription regulator in the human-associated yeast C. albicans. To this end, I combined genome-wide protein-DNA interaction assays and gene expression analysis that identified genes regulated by Zcf8p. Fluorescence microscopy uncovered that several top targets of Zcf8p localize to the fungal vacuole. Moreover, deletion and overexpression of ZCF8 resulted in alterations in vacuolar morphology and in luminal pH and rendered the fungus resistant or susceptible to a vacuole-disturbing drug. Finally, in vitro adherence assays showed that Zcf8p modulates the attachment of C. albicans to human epithelial cells in a vacuole-dependent manner. Given those findings, I posit that the previously uncharacterized transcription regulator Zcf8p modulates fungal attachment to epithelial cells in a manner that depends on the status of the fungal vacuole. Furthermore, the results highlight that vacuolar physiology is a substantial factor influencing the physical interaction between Candida cells and mammalian mucosal surfaces.}, subject = {Vakuole}, language = {en} }