@phdthesis{Eber2004, author = {Eber, Marcus}, title = {Wirksamkeit und Leistungsf{\"a}higkeit von nanoskaligen Fließregulierungsmitteln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9026}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Zusammenfassend stellen sich die hydrophoben Nanomaterialien als die optimalen Fließregulierungsmittel dar (Ausnahme: Printex® G). Die Agglomerate des hochpotenten hydrophoben Ruß-Derivats Printex® 95 liegen von Herstellerseite bereits in gen{\"u}gend zerkleinerter Form vor, so daß keine weitere Zerkleinerung w{\"a}hrend des Mischvorganges erforderlich ist. Infolgedessen adsorbiert es mit h{\"o}chster Geschwindigkeit an die Oberfl{\"a}che der Sch{\"u}ttgutpartikel und {\"u}bernimmt dort die Funktion von Oberfl{\"a}chenrauhigkeiten. In der Folge der werden die interpartikul{\"a}ren Haftkr{\"a}fte sehr schnell minimiert. Im Gegensatz zu den hydrophilen Nanomaterialien zeigt Printex® 95 keinen ausgepr{\"a}gten Wiederanstieg der Zugspannungen selbst nach sehr langen Mischzeiten von 4320 Minuten. Durch die Verwendung des hydrophoben Ruß-Derivates Printex® 95 werden Pulvermischungen erhalten, die zudem weitestgehend unempfindlich sind gegen{\"u}ber Kapillarkr{\"a}ften bei erh{\"o}hten Umgebungsfeuchten. Das hydrophobe Printex® 95 vereint damit praktisch alle gew{\"u}nschten Eigenschaften eines optimalen Fließregulierungsmittels und es kann als Modellsubstanz f{\"u}r die Entwicklung noch potenterer Nanomaterialien dienen. Bisher stand das nicht abschließend beurteilte cancerogene Potential dieses Stoffes einer breiten Anwendung entgegen.}, subject = {Nanostrukturiertes Material}, language = {de} } @phdthesis{Mehringer2021, author = {Mehringer, Christian Felix}, title = {Optimierung und Objektivierung der DNA-Biegewinkelmessung zur Untersuchung der initialen Schadenserkennung von Glykosylasen im Rahmen der Basen-Exzisions-Reparatur}, doi = {10.25972/OPUS-23084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230847}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Im Rahmen dieser Doktorarbeit sollte ankn{\"u}pfend an die Ergebnisse aus vo-rangegangenen Untersuchungen der AG Tessmer, das von B{\"u}chner et al. [1] vorgestellte Modell zur DNA-Schadenserkennung, welches im Speziellen auf Daten zu den Glykosylasen hTDG und hOGG1 basierte, auf seine Allgemein-g{\"u}ltigkeit f{\"u}r DNA-Glykosylasen untersucht werden. Das Modell beschreibt den Prozess der Schadenserkennung als eine notwendige {\"U}bereinstimmung der passiven Biegung am Schadensort mit dem aktiven BiegungswinkeI der scha-densspezifischen Glykosylase. Ein wesentlicher Bestandteil dieser Arbeit war zudem die Etablierung einer automatisierten Messsoftware zur objektiven Biegewinkelmessung an DNA-Str{\"a}ngen in rasterkraftmikroskopischen Aufnah-men. Dies wurde mit verschiedenen Bildverarbeitungsprogrammen sowie einer in MATLAB implementierten Messsoftware erreicht und das Programm zudem auf die Biegewinkelmessung von proteininduzierten Biegewinkeln erweitert. Zur Anwendung kam die Methode der automatisierten Biegewinkelmessung sowohl an rasterkraftmikroskopischen Aufnahmen der Glykosylase MutY gebunden an ungesch{\"a}digter DNA als auch an Aufnahmen von DNA mit und ohne Basen-schaden. Neben oxoG:A und G:A, den spezifischen MutY-Zielsch{\"a}den, wurden auch andere Basensch{\"a}den wie beispielsweise oxoG:C und ethenoA:T vermes-sen und zudem die von der Glykosylase MutY an ungesch{\"a}digter DNA induzier-te Biegung mit den Biegewinkeln der jeweiligen Zielsch{\"a}den verglichen. Die {\"U}bereinstimmung in den Konformationen der Zielsch{\"a}den und der Reparatur-komplexe auch f{\"u}r die Glykosylase MutY (wie bereits f{\"u}r hTDG und hOGG1 in oben genannter Arbeit gezeigt) erlauben ein verbessertes Verst{\"a}ndnis der Schadenssuche und -erkennung durch DNA-Glykosylasen, indem sie die All-gemeing{\"u}ltigkeit einer Biegungsenergie-basierten initialen Schadenserkennung durch DNA-Glykosylasen unterst{\"u}tzen. Die etablierte Messsoftware kann zu-k{\"u}nftig an weiteren DNA-Sch{\"a}den und den entsprechenden Protein-DNA-Komplexen ihre Anwendung finden und kann somit durch die effektive Gewin-nung objektiver Daten in großer Menge zur St{\"u}tzung des Modells beitragen.}, subject = {DNS-Reparatur}, language = {de} } @phdthesis{Schreyeck2016, author = {Schreyeck, Steffen}, title = {Molecular Beam Epitaxy and Characterization of Bi-Based V\(_2\)VI\(_3\) Topological Insulators}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145812}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The present thesis is addressed to the growth and characterization of Bi-based V2VI3 topological insulators (TIs). The TIs were grown by molecular beam epitaxy (MBE) on differently passivated Si(111) substrates, as well as InP(111) substrates. This allows the study of the influence of the substrate on the structural and electrical properties of the TIs. The Bi2Se3 layers show a change of mosaicity-tilt and -twist for growth on the differently prepared Si(111) substrates, as well as a significant increase of crystalline quality for growth on the lateral nearly lattice matched InP(111). The rocking curve FWHMs observed for thick layers grown on InP are comparable to these of common zincblende layers, which are close to the resolution limit of standard high resolution X-ray diffraction (HRXRD) setups. The unexpected high structural crystalline quality achieved in this material system is remarkable due to the presence of weak van der Waals bonds between every block of five atomic layers, i.e. a quintuple layer (QL), in growth direction. In addition to the mosaicity also twin domains, present in films of the V2VI3 material system, are studied. The twin defects are observed in Bi2Se3 layers grown on Si(111) and lattice matched InP(111) suggesting that the two dimensional surface lattice of the substrates can not determine the stacking order ABCABC... or ACBACB... in locally separated growth seeds. Therefore the growth on misoriented and rough InP(111) is analyzed. The rough InP(111) with its facets within a hollow exceeding the height of a QL is able to provide its stacking information to the five atomic layers within a QL. By varying the roughness of the InP substrate surface, due to thermal annealing, the influence on the twinning within the layer is confirmed resulting in a complete suppression of twin domains on rough InP(111). Focusing on the electrical properties of the Bi2Se3 films, the increased structural quality for films grown on lattice matched flat InP(111)B results in a marginal reduction of carrier density by about 10\% compared to the layers grown on H-passivated Si(111), whereas the suppression of twin domains for growth on rough InP(111)B resulted in a reduction of carrier density by an order of magnitude. This implies, that the twin domains are a main crystal defect responsible for the high carrier density in the presented Bi2Se3 thin films. Besides the binary Bi2Se3 also alloys with Sb and Te are fabricated to examine the influence of the compound specific point defects on the carrier density. Therefore growth series of the ternary materials Bi2Te(3-y)Se(y), Bi(2-x)Sb(x)Se3, and Bi(2-x)Sb(x)Te3, as well as the quaternary Bi(2-x)Sb(x)Te(3-y)Se(y) are studied. To further reduce the carrier density of twin free Bi2Se3 layers grown on InP(111)B:Fe a series of Bi(2-x)Sb(x)Se3 alloys were grown under comparable growth conditions. This results in a reduction of the carrier density with a minimum in the composition range of about x=0.9-1.0. The Bi(2-x)Sb(x)Te3 alloys exhibit a pn-transition, due to the dominating n-type and p-type point defects in its binary compounds, which is determined to reduce the bulk carrier density enabling the study the TI surface states. This pn-transition plays a significant role in realizing predicted applications and exotic effects, such as the quantum anomalous Hall effect. The magnetic doping of topological insulators with transition metals is studied by incorporating Cr and V in the alloy Bi(2-x)Sb(x)Te3 by codeposition. The preferential incorporation of Cr on group-V sites is confirmed by EDX and XRD, whereas the incorporation of Cr reduces the crystalline quality of the layer. Magnetotransport measurements of the Cr-doped TIs display an anomalous Hall effect confirming the realization of a magnetic TI thin film. The quantum anomalous Hall effect is observed in V-doped Bi(2-x)Sb(x)Te3, where the V-doping results in higher Curie temperatures, as well as higher coercive fields compared to the Cr-doping of the TIs. Moreover the present thesis contributes to the understanding of the role of the substrate concerning the crystalline quality of van der Waals bonded layers, such as the V2VI3 TIs, MoS2 and WoTe2. Furthermore, the fabrication of the thin film TIs Bi(2-x)Sb(x)Te(3-y)Se(y) in high crystalline quality serves as basis to explore the physics of topological insulators.}, subject = {Bismutverbindungen}, language = {en} } @misc{Fronczek2009, type = {Master Thesis}, author = {Fronczek, David Norman}, title = {Integration of fluorescence and atomic force microscopy for single molecule studies of protein complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The scope of this work is to develop a novel single-molecule imaging technique by combining atomic force microscopy (AFM) and optical fluorescence microscopy. The technique is used for characterizing the structural properties of multi-protein complexes. The high-resolution fluorescence microscopy and AFM are combined (FIONA-AFM) to allow for the identification of individual proteins in such complexes. This is achieved by labeling single proteins with fluorescent dyes and determining the positions of these fluorophores with high precision in an optical image. The same area of the sample is subsequently scanned by AFM. Finally, the two images are aligned and the positions of the fluorophores are displayed on top of the topographical data. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, fluorescence and AFM information can be aligned with an accuracy better than 10 nm, which is sufficient to identify single fluorescently labeled proteins in most multi-protein complexes. The limitations of localization precision and accuracy in fluorescence and AFM images are investigated, including their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two complementary techniques opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes while the fluorescence can indicate spatial relationships of the proteins within the complexes. Additionally, computer simulations are performed in order to validate the accuracy of the registration algorithm.}, subject = {Kraftmikroskopie}, language = {en} } @phdthesis{Mahapatra2007, author = {Mahapatra, Suddhasatta}, title = {Formation and Properties of Epitaxial CdSe/ZnSe Quantum Dots : Conventional Molecular Beam Epitaxy and Related Techniques}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Albeit of high technological import, epitaxial self-assembly of CdSe/ZnSe QDs is non-trivial and still not clearly understood. The origin and attributes of these QDs are significantly different from those of their III-V and group-IV counterparts. For III-V and group-IV heterosystems, QD-formation is assigned to the Stranski Krastanow (SK) transition, wherein elastic relaxation of misfit strain leads to the formation of coherent three-dimensional (3D) islands, from a supercritically strained two-dimensional (2D) epilayer. Unfortunately, this phenomenon is inconspicuous for the CdSe/ZnSe heterosystem. Well-defined 3D islands are not readily formed in conventional molecular beam epitaxial (MBE) growth of CdSe on ZnSe. Consequently, several alternative approaches have been adopted to induce/enhance formation of QDs. This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. It is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. The surface of the CdSe layer represents a rough 2D layer, characterized by a dense array of shallow (<1nm) abutting mounds. In capped samples, the CdSe deposit forms an inhomogeneous CdZnSe quantum well (QW)-like structure. This ternary QW consists of local Cd-rich inclusions, which confine excitons three-dimensionally, and act as QDs. The density of such QDs is very high (~ 1012 cm-2). The QDs defined by the composition inhomogeneities of the CdZnSe QW presumably originate from the shallow mounds of the uncapped CdSe surface. By a technique wherein a CdSe layer is grown at a low temperature (TG = 230 °C) and subsequently annealed at a significantly higher temperature (TA =310 °C), tiny but distinct 3D islands are formed. In this work, the mechanism underlying the formation of these islands is reported. While the CdSe deposit forms a quasi-two-dimensional (quasi-2D) layer at TG = 230 °C, subsequent annealing at TA = 310 °C results in a thermally activated "up-climb" of adatoms onto two-dimensional clusters (or precursors) and concomitant nucleation of 3D islands. The areal density of QDs, achieved by this technique, is at least a decade lower than that typical for conventional MBE growth. It is demonstrated that further reduction is possible by delaying the temperature ramp-up to TA. In the second technique, formation of distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (TD = 230 °C). Albeit the self-assembled islands are large, they are severely truncated during subsequent capping with ZnSe, presumably due to segregation of Cd and Zn-alloying of the islands. The segregation phenomenon is analyzed in this work and correlated to the optical properties of the QDs. Additionally, very distinct vertical correlation of QDs in QD-superlattices, wherein the first QD-layer is grown by this technique and the subsequent ones by migration enhanced epitaxy (MEE), is reported. The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. This leads not only to large alteration of the morphological and optical attributes of the QDs, but also to formation of unique self-assembled island-patterns. Oriented dashes, straight and buckled chains of islands, and aligned island-pairs are formed, depending on the thickness of the Te-cap layer. The islands are partially alloyed with Te and emit luminescence at very low energies (down to 1.7 eV at room temperature). The Te cap layer undergoes (poly)crystallization during temperature ramp-up (from room temperature to TD) for desorption. Here, it is shown that the self-assembled patterns of the island-ensembles are determined by the pattern of the grain boundaries of the polycrystalline Te layer. Based on an understanding of the mechanism of pattern formation, a simple and "clean" method for controlled positioning of individual QDs and QD-based extended nanostructures, is proposed in this work. The studies carried out in the framework of this thesis provide not only a deeper insight into the microscopic processes governing the heteroepitaxial self-assembly of CdSe/ZnSe(001) QDs, but also concrete approaches to achieve, optimize, and control several technologically-important features of QD-ensembles. Reduction and control of QD-areal-density, pronounced vertical correlation of distinctly-defined QDs in QD-superlattices, and self-assembly of QD-based extended structures, as demonstrated in this work, might turn out to be beneficial for envisioned applications in information-, and communication-technologies.}, subject = {Nanostruktur}, language = {en} }