@phdthesis{Zhang2014, author = {Zhang, Yi}, title = {Regulation of Agrobacterial Oncogene Expression in Host Plants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102578}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Virulent Agrobacterium tumefaciens strains transfer and integrate a DNA region of the tumor-inducing (Ti) plasmid, the T-DNA, into the plant genome and thereby cause crown gall disease. The most essential genes required for crown gall development are the T-DNA-encoded oncogenes, IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) for auxin, and Ipt (isopentenyl transferase) for cytokinin biosynthesis. When these oncogenes are expressed in the host cell, the levels of auxin and cytokinin increase and cause cell proliferation. The aim of this study was to unravel the molecular mechanisms, which regulate expression of the agrobacterial oncogenes in plant cells. Transcripts of the three oncogenes were expressed in Arabidopsis thaliana crown galls induced by A. tumefaciens strain C58 and the intergenic regions (IGRs) between their coding sequences (CDS) were proven to have promoter activity in plant cells. These promoters possess eukaryotic sequence structures and contain cis-regulatory elements for the binding of plant transcription factors. The high-throughput protoplast transactivation (PTA) system was used and identified the Arabidopsis thaliana transcription factors WRKY18, WRKY40, WRKY60 and ARF5 to activate the Ipt oncogene promoter. No transcription factor promoted the activity of the IaaH and IaaM promoters, despite the fact that the sequences contained binding elements for type B ARR transcription factors. Likewise, the treatment of Arabidopsis mesophyll protoplasts with cytokinin (trans-zeatin) and auxin (1-NAA) exerted no positive effect on IaaH and IaaM promoter activity. In contrast, the Ipt promoter strongly responded to a treatment with auxin and only modestly to cytokinin. The three Arabidopsis WRKYs play a role in crown gall development as the wrky mutants developed smaller crown galls than wild-type plants. The WRKY40 and WRKY60 genes responded very quickly to pathogen infection, two and four hours post infection, respectively. Transcription of the WRKY18 gene was induced upon buffer infiltration, which implicates a response to wounding. The three WRKY proteins interacted with ARF5 and with each other in the plant nucleus, but only WRKY40 together with ARF5 increased activation of the Ipt promoter. Moreover, ARF5 activated the Ipt promoter in an auxin-dependent manner. The severe developmental phenotype of the arf5 mutant prevented studies on crown gall development, nevertheless, the reduced crown gall growth on the transport inhibitor response 1 (TIR1) tir1 mutant, lacking the auxin sensor, suggested that auxin signaling is required for optimal crown gall development. In conclusion, A. tumefaciens recruits the pathogen defense related WRKY40 pathway to activate Ipt expression in T-DNA-transformed plant cells. IaaH and IaaM gene expression seems not to be controlled by transcriptional activators, but the increasing auxin levels are signaled via ARF5. The auxin-depended activation of ARF5 boosts expression of the Ipt gene in combination with WRKY40 to increase cytokinin levels and induce crown gall development.}, subject = {Agrobacterium tumefaciens}, language = {en} } @phdthesis{Stingl2011, author = {Stingl, Nadja}, title = {Regulation der Jasmonatbiosynthese durch Lipasen in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56393}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Lipasen regulieren die Biosynthese von Jasmonaten, die eine elementare Signalfunktion bei der Entwicklung von Pflanzen und der Abwehr von Pathogenen haben. Entsprechend dem klassischen „Vick-Zimmerman-Pathway" dienen die aus Galaktolipiden freigesetzten Fetts{\"a}uren α-18:3 und 16:3 als Substrate der Jasmons{\"a}ure (JA)-Synthese. In den letzen zehn Jahren wurden jedoch die Intermediate der JA-Biosynthese 12-Oxo-Phytodiens{\"a}ure (OPDA, ausgehend von α-18:3) und Dinor-12-Oxo-Phytodiens{\"a}ure (dnOPDA, ausgehend von 16:3) verestert in Galaktolipiden der Art Arabidopsis thaliana nachgewiesen. Die Biosynthese und die m{\"o}giche Speicherfunktion dieser komplexen, als Arabidopside bezeichneten, Lipide war jedoch noch unklar. In der Literatur wird ein alternativer Syntheseweg postuliert, in dem analog zum klassischen „Vick-Zimmerman-Pathway" die Biosynthese von veresterter OPDA/dnOPDA ausgehend von veresterter α-18:3/16:3 vollst{\"a}ndig in Galaktolipiden der Pastidenmembran stattfindet. Nach Freisetzung von OPDA/dnOPDA durch eine Lipase k{\"o}nnten OPDA/dnOPDA dann als Intermediate in die JA-Biosynthese einfliessen. Sowohl im klassischen „Vick-Zimmerman-Pathway" als auch im postulierten alternativen Syntheseweg ist die Aktivit{\"a}t von Lipasen von essentieller Bedeutung f{\"u}r die JA-Biosynthese. F{\"u}r zwei plastid{\"a}re sn1-spezifische Acyl-Hydrolasen, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) und DONGLE (DGL), wurde eine zentrale Funktion innerhalb der Jasmonat-Biosynthese in Bl{\"a}ttern von A. thaliana beschrieben. Dem zufolge ist DGL f{\"u}r die basalen und die fr{\"u}hen wundinduzierten JA-Gehalte und DAD1 f{\"u}r die Aufrechterhaltung der erh{\"o}hten JA-Konzentrationen in der sp{\"a}teren Verwundungsantwort verantwortlich. In der vorliegenden Arbeit wiesen drei unabh{\"a}ngige DGL-RNAi-Linien sowie DAD1-Knock-out-Mutanten sowohl unter basalen Bedingungen als auch zu fr{\"u}hen Zeitpunkten nach Verwundung sowie nach Infektion mit dem Bakterienstamm P. syringae DC3000 (avrRPM1) mit dem Wildtyp vergleichbare Konzentrationen an OPDA/JA auf. Dies steht im klaren Widerspruch zu den publizierten Daten. Die Beteiligung von DAD1 an der OPDA/JA-Biosynthese zu sp{\"a}ten Zeitpunkten nach Verwundung konnte jedoch best{\"a}tigt werden. Ferner konnte eine dramatische {\"U}ber-Akkumulation von Arabidopsiden in DAD1-defizienten Mutanten nach Verwundung nachgewiesen werden, was auf eine Beteiligung von DAD1 bei der Freisetzung von membrangebundener OPDA/dnOPDA hinweist. Die Analyse der Einzelmutanten 16 weiterer plastid{\"a}rer Lipasen unter basalen Bedingungen, nach Verwundung und nach Infektion mit P. syringae DC3000 (avrRPM1) zeigte, dass keine der analysierten Mutanten eine essentielle Rolle in der JA-Biosynthese spielt. Jedoch wiesen Mutanten der sn1-spezifischen Lipasen AtPLA1-Iγ1 (At1g06800) signifikant niedrigere Konzentrationen an dnOPDA, OPDA und JA nach Verwundung auf, was eine indirekte Beteiligung an der JA-Biosynthese vermuten l{\"a}sst. Blattgewebe einer Quadrupel-Mutanten, welche defizient in vier DAD1-{\"a}hnlichen Lipasen (AtPLA1-Iβ2, AtPLA1-Iγ1, AtPLA1-Iγ2, AtPLA1-Iγ3) ist, wies nach Verwundung mit der AtPLA1-Iγ1-Mutante vergleichbar niedrige Gehalte an dnOPDA, OPDA sowie JA auf. Da stets in sn2-Position vorliegende 16:3/dnOPDA ebenfalls Substrat der JA-Biosynthese sein kann, m{\"u}ssen zus{\"a}tzlich zu DAD1 und AtPLA1-Iγ1 noch weitere nicht identifizierte sn1- und sn2-spezifische Acyl-Hydrolasen an der JA-Biosynthese nach Verwundung und Pathogeninfektion beteiligt sein. Dies bedeutet, dass entgegen der in der Literatur vertretenen Meinung, nicht eine sondern mehrere Lipasen in redundanter Weise die Biosynthese von Jasmonaten regulieren. Zur Aufkl{\"a}rung der Biosynthese und m{\"o}glichen Speicherfunktion der ausschließlich in Arabidopsis vorkommenden Arabidopside wurden A. thaliana Keimlinge mit D5-Linolens{\"a}ure-Ethylester inkubiert, um eine D5-Markierung der komplexen Lipide zu erzielen. Durch einen anschließenden Stressstimulus mittels Zugabe von Silbernitrat wurde die Jasmonat-Synthese induziert. Die vergleichende Analyse der Markierungsgrade der komplexen Membranlipide MGDG, DGDG, PC sowie der freien OPDA und JA vor und nach Zugabe des Silbernitrats zeigte, eine hohe {\"U}bereinstimmung der Markierungsgrade der komplexen Membranlipide 18:3-18:3-MGDG, 18:3-OPDA-MGDG, Arabidopsid B (MGDG-OPDA-OPDA) und Arabidopsid G (OPDA-MGDG-OPDA-OPDA) vor der Silbernitratbehandlung mit denjenigen der durch Silbernitratbehandlung neu gebildeten OPDA/JA. Dagegen wird die hochmarkierte freie Linolens{\"a}ure nicht direkt zu freier OPDA umgesetzt. Die erhaltenen Ergebnisse zeigen, dass 18:3-OPDA-MGDG, Arabidopsid B und Arabidopsid G direkte Vorstufen von freier OPDA sein k{\"o}nnen. Damit {\"u}bereinstimmend konnte gezeigt werden, dass nach Silbernitratstress die Spiege der Vorstufe 18:3-18:3-MGDG abnehmen und zeitgleich die entsprechenden unmittelbaren Metabolite 18:3-OPDA-MGDG, Arabidopsid B und Arabidopsid G akkumulieren.}, subject = {Lipasen}, language = {de} } @phdthesis{Friedrich2015, author = {Friedrich, Alexandra}, title = {Beeinflussung des Na+-D-Glukose-Kotransporters SGLT1 und der Na+-Nukleosidtransporter CNT durch Peptidmotive des Regulatorproteins RS1 im Darm}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Der Natrium-D-Glukose Kotransporter 1 (SGLT1) spielt eine wichtige Rolle bei der Aufnahme von Glukose aus dem Darmlumen in die Enterozyten des Darms. Anhand von Untersuchungen an Xenopus laevis-Oozyten konnte in unserem Labor das Protein RS1 als posttranslationales Regulatorprotein f{\"u}r SGLT1 und diverse andere Transporter ermittelt werden. Es wurde eine regulatorische Dom{\"a}ne aus RS1 mit vielen potentiellen Phosphorylierungsstellen isoliert (RS1-Reg) und gezeigt dass RS1-Reg die Abschn{\"u}rung von Transporter enthaltenen Vesikeln vom Transgolgi-Netzwerk hemmt. Neben SGLT1 reguliert RS1 auch die konzentrierenden Nukleosidtransporter (CNTs) am TGN. Die Regulation der Transporter ist vom Phosphorylierungszustand von RS1-Reg abh{\"a}ngig. So wurde durch Versuche an Oozyten von Xenopus laevis und Injektion von RS1-Reg Mutanten gezeigt, dass die Phosphorylierung von RS1-Reg an einigen Stellen zu einer Inhibition von SGLT1 f{\"u}hrte, w{\"a}hrend der Nukleosidtransporter CNT1 durch die dephosphorylierte Mutante herunterreguliert wurden. Neben der phosphorylierungsabh{\"a}ngigen Regulation konnte f{\"u}r SGLT1 auch gezeigt werden, dass die Herunterregulation nur unter Niedrigzucker-Bedingungen erfolgte, nicht jedoch bei hohen Glukosekonzentrationen. F{\"u}r die CNTs war eine derartige Zuckerabh{\"a}ngigkeit nicht zu beobachten. Im Rahmen der vorliegenden Studie wurde untersucht, ob die Ergebnisse aus den Oozytenmessungen auch in vivo in einem S{\"a}ugetier gezeigt werden k{\"o}nnen. Hierzu wurden Mutanten der regulatorischen Dom{\"a}ne (RS1-Reg) des Maus-Proteins, welche den phosphorylierten Zustand simulierten (RS1-Reg (S19E)), oder die Phosphorylierung verhinderten (RS1-Reg (S19A)) eingesetzt. Diese wurden an ein Nanohydrogel gekoppelt, um eine Aufnahme in die Enterozyten im Darm zu gew{\"a}hrleisten. Es wurde in der RS1KO-Mausohne funktionelles RS1 gezeigt, dass auch im in vivo-System eine Herunterregulation von SGLT1 durch mRS1-Reg (S19E), nicht jedoch durch mRS1-Reg (S19A) erfolgte, w{\"a}hrend die CNTs nur durch mRS1-Reg (S19A) inhibiert wurden. Des Weiteren f{\"u}hrte mRS1-Reg (S19A) in der Wildtypmaus bei niedrigen Zuckerkonzentrationen zu einer Stimulation von SGLT1, was f{\"u}r eine Kompetition mit dem endogenen RS1-Proteins spricht. Es konnte indirekt der Beweis erbracht werden, dass {\"u}ber Nanohydrogele l{\"a}ngere Proteine in die Zelle gebracht werden k{\"o}nnen und dort funktionell freigesetzt werden.}, subject = {Glucosetransport}, language = {de} }