@article{PilsKoppPetersonetal.2012, author = {Pils, Stefan and Kopp, Kathrin and Peterson, Lisa and Tascon, Julia Delgado and Nyffenegger-Jann, Naja J. and Hauck, Christof R.}, title = {The Adaptor Molecule Nck Localizes the WAVE Complex to Promote Actin Polymerization during CEACAM3-Mediated Phagocytosis of Bacteria}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0032808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131747}, pages = {e32808}, year = {2012}, abstract = {Background: CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings: In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions: Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.}, language = {en} } @article{RemesBerghoffFoerstneretal.2014, author = {Remes, Bernhard and Berghoff, Bork A. and F{\"o}rstner, Konrad U. and Klug, Gabriele}, title = {Role of oxygen and the OxyR protein in the response to iron limitation in Rhodobacter sphaeroides}, series = {BMC Genomics}, volume = {15}, journal = {BMC Genomics}, number = {794}, issn = {1471-2164}, doi = {10.1186/1471-2164-15-794}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115357}, year = {2014}, abstract = {Background: High intracellular levels of unbound iron can contribute to the production of reactive oxygen species (ROS) via the Fenton reaction, while depletion of iron limits the availability of iron-containing proteins, some of which have important functions in defence against oxidative stress. Vice versa increased ROS levels lead to the damage of proteins with iron sulphur centres. Thus, organisms have to coordinate and balance their responses to oxidative stress and iron availability. Our knowledge of the molecular mechanisms underlying the co-regulation of these responses remains limited. To discriminate between a direct cellular response to iron limitation and indirect responses, which are the consequence of increased levels of ROS, we compared the response of the alpha-proteobacterium Rhodobacter sphaeroides to iron limitation in the presence or absence of oxygen. Results: One third of all genes with altered expression under iron limitation showed a response that was independent of oxygen availability. The other iron-regulated genes showed different responses in oxic or anoxic conditions and were grouped into six clusters based on the different expression profiles. For two of these clusters, induction in response to iron limitation under oxic conditions was dependent on the OxyR regulatory protein. An OxyR mutant showed increased ROS production and impaired growth under iron limitation. Conclusion: Some R. sphaeroides genes respond to iron limitation irrespective of oxygen availability. These genes therefore reflect a "core iron response" that is independent of potential ROS production under oxic, iron-limiting conditions. However, the regulation of most of the iron-responsive genes was biased by oxygen availability. Most strikingly, the OxyR-dependent activation of a subset of genes upon iron limitation under oxic conditions, including many genes with a role in iron metabolism, revealed that elevated ROS levels were an important trigger for this response. OxyR thus provides a regulatory link between the responses to oxidative stress and to iron limitation in R. sphaeroides.}, language = {en} } @article{ZukherNovikovaTikhonovetal.2014, author = {Zukher, Inna and Novikova, Maria and Tikhonov, Anton and Nesterchuk, Mikhail V. and Osterman, Ilya A. and Djordjevic, Marko and Sergiev, Petr V. and Sharma, Cynthia M. and Severinov, Konstantin}, title = {Ribosome-controlled transcription termination is essential for the production of antibiotic microcin C}, series = {Nucleic Acids Research}, volume = {42}, journal = {Nucleic Acids Research}, number = {19}, issn = {0305-1048}, doi = {10.1093/nar/gku880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114839}, pages = {11891-11902}, year = {2014}, abstract = {Microcin C (McC) is a peptide-nucleotide antibiotic produced by Escherichia coli cells harboring a plasmid-borne operon mccABCDE. The heptapeptide MccA is converted into McC by adenylation catalyzed by the MccB enzyme. Since MccA is a substrate for MccB, a mechanism that regulates the MccA/MccB ratio likely exists. Here, we show that transcription from a promoter located upstream of mccA directs the synthesis of two transcripts: a short highly abundant transcript containing the mccA ORF and a longer minor transcript containing mccA and downstream ORFs. The short transcript is generated when RNA polymerase terminates transcription at an intrinsic terminator located in the intergenic region between the mccA and mccB genes. The function of this terminator is strongly attenuated by upstream mcc sequences. Attenuation is relieved and transcription termination is induced when ribosome binds to the mccA ORF. Ribosome binding also makes the mccA RNA exceptionally stable. Together, these two effects-ribosome induced transcription termination and stabilization of the message-account for very high abundance of the mccA transcript that is essential for McC production. The general scheme appears to be evolutionary conserved as ribosome-induced transcription termination also occurs in a homologous operon from Helicobacter pylori.}, language = {en} } @article{RicoYepesRodriguezetal.2014, author = {Rico, Sergio and Yepes, Ana and Rodriguez, Hector and Santamaria, Jorge and Antoraz, Sergio and Krause, Eva M. and Diaz, Margarita and Santamaria, Ramon I.}, title = {Regulation of the AbrA1/A2 Two-Component System in Streptomyces coelicolor and the Potential of Its Deletion Strain as a Heterologous Host for Antibiotic Production}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, issn = {1932-6203}, doi = {10.1371/journal.pone.0109844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115151}, pages = {e109844}, year = {2014}, abstract = {The Two-Component System (TCS) AbrA1/A2 from Streptomyces coelicolor M145 is a negative regulator of antibiotic production and morphological differentiation. In this work we show that it is able to auto-regulate its expression, exerting a positive induction of its own operon promoter, and that its activation is dependent on the presence of iron. The overexpression of the abrA2 response regulator (RR) gene in the mutant DabrA1/A2 results in a toxic phenotype. The reason is an excess of phosphorylated AbrA2, as shown by phosphoablative and phosphomimetic AbrA2 mutants. Therefore, non-cognate histidine kinases (HKs) or small phospho-donors may be responsible for AbrA2 phosphorylation in vivo. The results suggest that in the parent strain S. coelicolor M145 the correct amount of phosphorylated AbrA2 is adjusted through the phosphorylation-dephosphorylation activity rate of the HK AbrA1. Furthermore, the ABC transporter system, which is part of the four-gene operon comprising AbrA1/A2, is necessary to de-repress antibiotic production in the TCS null mutant. Finally, in order to test the possible biotechnological applications of the DabrA1/A2 strain, we demonstrate that the production of the antitumoral antibiotic oviedomycin is duplicated in this strain as compared with the production obtained in the wild type, showing that this strain is a good host for heterologous antibiotic production. Thus, this genetically modified strain could be interesting for the biotechnology industry.}, language = {en} } @article{MoellerOverloeperFoerstneretal.2014, author = {M{\"o}ller, Philip and Overl{\"o}per, Aaron and F{\"o}rstner, Konrad U. and Wen, Tuan-Nan and Sharma, Cynthia M. and Lai, Erh-Min and Narberhaus, Franz}, title = {Profound Impact of Hfq on Nutrient Acquisition, Metabolism and Motility in the Plant Pathogen Agrobacterium tumefaciens}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, doi = {10.1371/journal.pone.0110427}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114874}, pages = {e110427}, year = {2014}, abstract = {As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-sequencing (RIP-seq) of Hfq-bound RNAs, we demonstrate the pervasive role of Hfq in nutrient acquisition, metabolism and motility of the plant pathogen Agrobacterium tumefaciens. 136 of 2544 proteins identified by iTRAQ (isobaric tags for relative and absolute quantitation) were affected in the absence of Hfq. Most of them were associated with ABC transporters, general metabolism and motility. RIP-seq of chromosomally encoded Hfq 3xFlag revealed 1697 mRNAs and 209 non-coding RNAs (ncRNAs) associated with Hfq. 56 ncRNAs were previously undescribed. Interestingly, 55\% of the Hfq-bound ncRNAs were encoded antisense (as) to a protein-coding sequence suggesting that A. tumefaciens Hfq plays an important role in asRNA-target interactions. The exclusive enrichment of 296 mRNAs and 31 ncRNAs under virulence conditions further indicates a role for post-transcriptional regulation in A. tumefaciens-mediated plant infection. On the basis of the iTRAQ and RIP-seq data, we assembled a comprehensive model of the Hfq core regulon in A. tumefaciens.}, language = {en} } @article{AbdaKrysciakKrohnMoltetal.2015, author = {Abda, Ebrahim M. and Krysciak, Dagmar and Krohn-Molt, Ines and Mamat, Uwe and Schmeisser, Christel and F{\"o}rstner, Konrad U. and Schaible, Ulrich E. and Kohi, Thomas A. and Nieman, Stefan and Streit, Wolfgang R.}, title = {Phenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and \(\beta\)-Lactamase Expression}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {1373}, doi = {10.3389/fmicb.2015.01373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136446}, year = {2015}, abstract = {Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas rnaltophilia has been frequently isolated from cystic fibrosis patients, can cause numerous infections in other organs and tissues, and is difficult to treat due to antibiotic resistances. S. maltophilia K279a produces the Li and L2 beta-lactamases in response to beta-lactam treatment. Here we report that the patient isolate S. rnaltophilia K279a diverges into cellular subpopulations with distinct but reversible morphotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of elongated chains of bacteria during exponential growth phase and the occurrence of mainly rod-shaped cells in liquid media. RNA-seq analysis of small versus big colonies revealed differential regulation of at least seven genes among the colony morphotypes. Among those, bleu and bla(L2) were transcriptionally the most strongly upregulated genes. Promoter fusions of b/a(L1) and b/a(L2) genes indicated that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additionally, the comE homolog was found to be differentially expressed in homogenously versus heterogeneously bla(L2) expressing cells as identified by RNA(seq) analysis. Overexpression of cornE in S. maltophilia K279a reduced the level of cells that were in a bla(L2)-ON mode to 1\% or lower. Taken together, our data provide strong evidence that S. maltophilia K279a populations develop phenotypic heterogeneity in an ampicillin challenged model. This cellular variability is triggered by regulation networks including b/a(L1), b/a(L2), and comE.}, language = {en} } @article{SchmidtkeFindeissSharmaetal.2011, author = {Schmidtke, Cornelius and Findeiß, Sven and Sharma, Cynthia M. and Kuhfuss, Juliane and Hoffmann, Steve and Vogel, J{\"o}rg and Stadler, Peter F. and Bonas, Ulla}, title = {Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {5}, doi = {10.1093/nar/gkr904}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131781}, pages = {2020 -- 2031}, year = {2011}, abstract = {The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14\% of all mRNAs are leaderless and 13\% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs.}, language = {en} } @article{FanLiChaoetal.2015, author = {Fan, Ben and Li, Lei and Chao, Yanjie and F{\"o}rstner, Konrad and Vogel, J{\"o}rg and Borriss, Rainer and Wu, Xiao-Qin}, title = {dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0142002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138369}, pages = {e0142002}, year = {2015}, abstract = {Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions.}, language = {en} } @article{BeckerOelschlaegerWullaertetal.2013, author = {Becker, Svetlana and Oelschlaeger, Tobias A. and Wullaert, Andy and Pasparakis, Manolis and Wehkamp, Jan and Stange, Eduard F. and Gersemann, Michael}, title = {Bacteria Regulate Intestinal Epithelial Cell Differentiation Factors Both In Vitro and In Vivo}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0055620}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131168}, pages = {e55620}, year = {2013}, abstract = {Background: The human colon harbours a plethora of bacteria known to broadly impact on mucosal metabolism and function and thought to be involved in inflammatory bowel disease pathogenesis and colon cancer development. In this report, we investigated the effect of colonic bacteria on epithelial cell differentiation factors in vitro and in vivo. As key transcription factors we focused on Hes1, known to direct towards an absorptive cell fate, Hath1 and KLF4, which govern goblet cell. Methods: Expression of the transcription factors Hes1, Hath1 and KLF4, the mucins Muc1 and Muc2 and the defensin HBD2 were measured by real-time PCR in LS174T cells following incubation with several heat-inactivated E. coli strains, including the probiotic E. coli Nissle 1917+/- flagellin, Lactobacilli and Bifidobacteria. For protein detection Western blot experiments and chamber-slide immunostaining were performed. Finally, mRNA and protein expression of these factors was evaluated in the colon of germfree vs. specific pathogen free vs. conventionalized mice and colonic goblet cells were counted. Results: Expression of Hes1 and Hath1, and to a minor degree also of KLF4, was reduced by E. coli K-12 and E. coli Nissle 1917. In contrast, Muc1 and HBD2 expression were significantly enhanced, independent of the Notch signalling pathway. Probiotic E. coli Nissle 1917 regulated Hes1, Hath1, Muc1 and HBD2 through flagellin. In vivo experiments confirmed the observed in vitro effects of bacteria by a diminished colonic expression of Hath1 and KLF4 in specific pathogen free and conventionalized mice as compared to germ free mice whereas the number of goblet cells was unchanged in these mice. Conclusions: Intestinal bacteria influence the intestinal epithelial differentiation factors Hes1, Hath1 and KLF4, as well as Muc1 and HBD2, in vitro and in vivo. The induction of Muc1 and HBD2 seems to be triggered directly by bacteria and not by Notch.}, language = {en} } @article{JaegerPernitzschRichteretal.2012, author = {J{\"a}ger, Dominik and Pernitzsch, Sandy R. and Richter, Andreas S. and Backofen, Rolf and Sharma, Cynthia M. and Schmitz, Ruth A.}, title = {An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {21}, doi = {10.1093/nar/gks847}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134972}, pages = {10964-10979}, year = {2012}, abstract = {We report on the characterization and target analysis of the small (s) RNA\(_{162}\) in the methanoarchaeon Methanosarcina mazei. Using a combination of genetic approaches, transcriptome analysis and computational predictions, the bicistronic MM2441-MM2440 mRNA encoding the transcription factor MM2441 and a protein of unknown function was identified as a potential target of this sRNA, which due to processing accumulates as three stabile 5' fragments in late exponential growth. Mobility shift assays using various mutants verified that the non-structured single-stranded linker region of sRNA\(_{162}\) (SLR) base-pairs with the MM2440-MM2441 mRNA internally, thereby masking the predicted ribosome binding site of MM2441. This most likely leads to translational repression of the second cistron resulting in dis-coordinated operon expression. Analysis of mutant RNAs in vivo confirmed that the SLR of sRNA\(_{162}\) is crucial for target interactions. Furthermore, our results indicate that sRNA\(_{162}\)-controlled MM2441 is involved in regulating the metabolic switch between the carbon sources methanol and methylamine. Moreover, biochemical studies demonstrated that the 50 end of sRNA\(_{162}\) targets the 5'-untranslated region of the cis-encoded MM2442 mRNA. Overall, this first study of archaeal sRNA/mRNA-target interactions unraveled that sRNA\(_{162}\) acts as an antisense (as) RNA on cis- and trans-encoded mRNAs via two distinct domains, indicating that cis-encoded asRNAs can have larger target regulons than previously anticipated.}, language = {en} }