@article{PratiharGhoshStepanenkoetal.2010, author = {Pratihar, Pampa and Ghosh, Suhrit and Stepanenko, Vladimir and Patwardhan, Sameer and Grozema, Ferdinand C. and Siebbeles, Laurens D. A. and W{\"u}rthner, Frank}, title = {Self-assembly and semiconductivity of an oligothiophene supergelator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67817}, year = {2010}, abstract = {A bis(trialkoxybenzamide)-functionalized quaterthiophene derivative was synthesized and its self-assembly properties in solution were studied. In non-polar solvents such as cyclohexane, this quaterthiophene π-system formed fibril aggregates with an H-type molecular arrangement due to synergistic effect of hydrogen bonding and π-stacking. The self-assembled fibres were found to gelate numerous organic solvents of diverse polarity. The charge transport ability of such elongated fibres of quaterthiophene π-system was explored by the pulse radiolysis time resolved microwave conductivity (PR-TRMC) technique and moderate mobility values were obtained. Furthermore, initial AFM and UV-vis spectroscopic studies of a mixture of our electron-rich quaterthiophene derivative with the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) revealed a nanoscale segregated assembly of the individual building blocks in the blend.}, subject = {Organische Chemie}, language = {en} } @article{HomannQamarSerimetal.2010, author = {Homann, Arne and Qamar, Riaz-ul and Serim, Sevnur and Dersch, Petra and Seibel, Juergen}, title = {Bioorthogonal metabolic glycoengineering of human larynx carcinoma (HEp-2) cells targeting sialic acid}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67806}, year = {2010}, abstract = {Sialic acids are located at the termini of mammalian cell-surface glycostructures, which participate in essential interaction processes including adhesion of pathogens prior to infection and immunogenicity. Here we present the synthesis and bioorthogonal metabolic incorporation of the sialic acid analogue N-(1-oxohex-5-ynyl)neuraminic acid (Neu5Hex) into the cell-surface glycocalyx of a human larynx carcinoma cell line (HEp-2) and its fluorescence labelling by click chemistry.}, subject = {Organische Chemie}, language = {en} }