@phdthesis{Maier2010, author = {Maier, Florian C.}, title = {Spectromicroscopic characterisation of the formation of complex interfaces}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65062}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Within the framework of this thesis the mechanisms of growth and reorganisation of surfaces within the first few layers were investigated that are the basis for the fabrication of high quality thin films and interfaces. Two model systems, PTCDA/Ag(111) and CdSe/ZnSe quantum dots (QD), were chosen to study such processes in detail and to demonstrate the power and improvements of the aberration corrected spectromicroscope SMART [1] simultaneously. The measurements benefit especially from the enhanced transmission of the microscope and also from its improved resolution. SMART, the first double-aberration corrected instrument of its kind [2], provided comprehensive methods (LEEM/PEEM, μ-LEED, μ-XPS) to study in-situ and in real time the surface reorganisation and to determine morphology, local structure and local chemical composition of the resulting thin film. Complementarily, a commercial AFM [3] was used ex-situ. XPEEM and μ-XPS measurements were made possible by attaching SMART to the high flux density beamline of the soft-X-ray source BESSY-II [4]. PTCDA/Ag(111) - Growth and structure of the first two layers Although PTCDA/Ag(111) is one of the most intensely studied model systems for the growth of organic semiconductor thin films, it still offers new insights into a complex growth behaviour. This study enlightens the temperature dependant influence of morphological features as small as monatomic Ag steps on the growth process of the first two layers. At low temperatures, single Ag steps act as diffusion barriers. But interdiffusion was observed already for the 2nd layer whereas domain boundaries in the 1st PTCDA-layer persist for crystallite growth in the 2nd layer. 1st layer islands are more compact and the more dendritic development of the 2nd layer indicates reduced interaction strength between 2nd and 1st layer. These findings were explained by a model consisting of structural and potential barriers. The second part of the PTCDA study reveals a variety of phases that appears only if at least two layers are deposited. Besides the six known rotational domains of the interface system PTCDA/Ag(111) [5], a further manifold of structures was discovered. It does not only show a surprising striped image contrast, but the 2nd layer also grows in an elongated way along these so-called 'ripples'. The latter show a rather large period and were found in a wide temperature range. Additionally the μ-LEED pattern of such a domain shows a new super-superstructure as well. This phase is explained by a structural model that introduces a rotated, more relaxed domain in the 2nd layer that does not exist in the first layer. Its structural parameters are similar to those of the bulk unitcells of PTCDA. The model is confirmed by the observation of two different rotational domains that grow on top of one single 'substrate' domain in the 1st layer. The orientations of the ripple phases fit as well to the predictions of the model. The growth direction along the ripples corresponds to the short diagonal of the super-superstructure unitcell with diamond-like shape. CdSe/ZnSe - Inverse structuring by sublimation of an α-Te cap With the second model system the formation of CdSe quantum dots (QD) from strained epi-layers was investigated. In this case the structures do not form during deposition, but rather during sublimation of the so-called 'ignition cap'. For these pilot experiments not only the process of QD formation itself was of interest, but also the portability of the preparation and the prevention of contaminations. It was found that the α-Se is well suited for capping and the last step of the QD preparation, the sublimation of the α-Te cap, needs a sufficiently high rate in rise of temperature. Subsequently the cap, the process of desorption and the final surface with the quantum structures were investigated in detail. The cap was deposited by the MBE-group in W{\"u}rzburg as an amorphous Te layer but was found to contain a variety of structures. Holes, cracks, and micro-crystallites within an α-Te matrix were identified. Sublimation of the "ignition cap" was observed in real-time. Thus the discovered cap-structures could be correlated with the newly formed features as, e.g., QDs on the bare CdSe surface. Since CdSe/ZnSe QDs prefer to form in the neighbourhood of the Te μ-crystallites, Te was found to play a major role in their formation process. Different explanations as the impact of Te as a surfactant, an enhanced mobility of adatoms or as stressor nuclei are discussed. The spectromicroscopic characterisation of the CdSe surface with QDs revealed the crystallographic directions. An increased Cd signal of the film was found at positions of former holes. Several possibilities as segregation or surface termination are reviewed, that might explain this slight Cd variation. Therewith, an important step to a detailed understanding of the complex reorganisation process in coating systems could be achieved.}, subject = {Halbleiterschicht}, language = {en} } @phdthesis{CardosoBarato2010, author = {Cardoso Barato, Andre}, title = {Nonequilibrium phase transitions and surface growth}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50122}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This thesis is concerned with the statistical physics of various systems far from thermal equilibrium, focusing on universal critical properties, scaling laws and the role of fluctuations. To this end we study several models which serve as paradigmatic examples, such as surface growth and non-equilibrium wetting as well as phase transitions into absorbing states. As a particular interesting example of a model with a non-conventional scaling behavior, we study a simplified model for pulsed laser deposition by rate equations and Monte Carlo simulations. We consider a set of equations, where islands are assumed to be point-like, as well as an improved one that takes the size of the islands into account. The first set of equations is solved exactly but its predictive power is restricted to the first few pulses. The improved set of equations is integrated numerically, is in excellent agreement with simulations, and fully accounts for the crossover from continuous to pulsed deposition. Moreover, we analyze the scaling of the nucleation density and show numerical results indicating that a previously observed logarithmic scaling does not apply. In order to understand the impact of boundaries on critical phenomena, we introduce particle models displaying a boundary-induced absorbing state phase transition. These are one-dimensional systems consisting of a single site (the boundary) where creation and annihilation of particles occur, while particles move diffusively in the bulk. We study different versions of these models and confirm that, except for one exactly solvable bosonic variant exhibiting a discontinuous transition with trivial exponents, all the others display a non-trivial behavior, with critical exponents differing from their mean-field values, representing a universality class. We show that these systems are related to a \$(0+1)\$-dimensional non-Markovian model, meaning that in nonequilibrium a phase transition can take place even in zero dimensions, if time long-range interactions are considered. We argue that these models constitute the simplest universality class of phase transition into an absorbing state, because the transition is induced by the dynamics of a single site. Moreover, this universality class has a simple field theory, corresponding to a zero dimensional limit of direct percolation with L{\'e}vy flights in time. Another boundary phenomena occurs if a nonequilibrium growing interface is exposed to a substrate, in this case a nonequilibrium wetting transition may take place. This transition can be studied through Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang equation, which defines a very robust universality class for nonequilibrium moving interfaces, is combined with a soft-wall potential. While in the second, microscopic models, in the corresponding universality class, with evaporation and deposition of particles in the presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the problem, corresponding to the Edwards-Wilkinson equation with a potential in the continuum approach or to the fulfillment of detailed balance in the microscopic models. In this thesis we present the analytical and numerical methods used to investigate the problem and the very rich behavior that is observed with them. The entropy production for a Markov process with a nonequilibrium stationary state is expected to give a quantitative measure of the distance form equilibrium. In the final chapter of this thesis, we consider a Kardar-Parisi-Zhang interface and investigate how entropy production varies with the interface velocity and its dependence on the interface slope, which are quantities that characterize how far the stationary state of the interface is away from equilibrium. We obtain results in agreement with the idea that the entropy production gives a measure of the distance from equilibrium. Moreover we use the same model to study fluctuation relations. The fluctuation relation is a symmetry in the large deviation function associated to the probability of the variation of entropy during a fixed time interval. We argue that the entropy and height are similar quantities within the model we consider and we calculate the Legendre transform of the large deviation function associated to the height for small systems. We observe that there is no fluctuation relation for the height, nevertheless its large deviation function is still symmetric.}, subject = {Nichtgleichgewichtsstatistik}, language = {en} }