@phdthesis{Konrad2021, author = {Konrad, Charlotte}, title = {Biochemische Charakterisierung von cAMP-Gradienten - Einfluss von Phosphodiesterasen}, doi = {10.25972/OPUS-20572}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205728}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cyclisches Adenosinmonophosphat ist ein ubiquit{\"a}rer zweiter Botenstoff zahlreicher Signalwege im menschlichen K{\"o}rper. Auf eine Vielzahl verschiedenster extrazellul{\"a}rer Signale folgt jedoch eine Erh{\"o}hung desselben intrazellul{\"a}ren Botenstoffs - cAMP. Nichtsdestotrotz schafft es die Zelle, Signalspezifit{\"a}t aufrecht zu erhalten. Ein anerkanntes, wenn auch bisher unverstandenes Modell, um dieses zu erm{\"o}glichen, ist das Prinzip der Kompartimentierung. Die Zelle besitzt demnach Areale verschieden hoher cAMP-Konzentrationen, welche lokal begrenzt einzelne Signalkaskaden beeinflussen und somit eine differenzierte Signal{\"u}bertragung erm{\"o}glichen. Eine m{\"o}gliche Ursache f{\"u}r die Ausbildung solcher Bereiche geringerer cAMP- Konzentrationen (hier als Dom{\"a}nen bezeichnet), ist die hydrolytische Aktivit{\"a}t von Phosphodiesterasen (PDEs), welche als einzige Enzyme die F{\"a}higkeiten besitzen, cAMP zu degradieren. In dieser Arbeit wird der Einfluss der cAMP-Hydrolyse verschiedener PDEs auf die Gr{\"o}ße dieser Dom{\"a}nen evaluiert und mit denen der PDE4A1 verglichen, welche bereits durch unsere Arbeitsgruppe aufgrund ihrer Gr{\"o}ße als Nanodom{\"a}nen definiert wurden. Der Fokus wird dabei auf den Einfluss von kinetischen Eigenschaften der Phosphodiesterasen gelegt. So werden eine PDE mit hoher Umsatzgeschwindigkeit (PDE2A3) und eine PDE mit hoher Substrataffinit{\"a}t (PDE8A1) verglichen. Mithilfe sogenannter Linker, Abstandshaltern definierter L{\"a}nge, werden zus{\"a}tzlich die Nanodom{\"a}nen ausgemessen, um einen direkten Zusammenhang zwischen Gr{\"o}ße und kinetischer Eigenschaft anzugeben. Die Zusammenschau der Ergebnisse zeigt, dass die maximale Umsatzgeschwindigkeit der Phosphodiesterasen direkt mit der Gr{\"o}ße der Nanodom{\"a}nen korreliert. Durch den unmittelbaren Vergleich der gesamten PDE mit ihrer katalytischen Dom{\"a}ne wird zus{\"a}tzlich der Einfluss von regulatorischen Dom{\"a}nen evaluiert. Es wird gezeigt, dass diese cAMP-Gradienten modulieren k{\"o}nnen. Bei der PDE2A3 geschieht die Modulation u.a. durch Stimulation mit cGMP, welche h{\"o}chstwahrscheinlich dosisabh{\"a}ngig ist und somit graduell verl{\"a}uft. Hiermit pr{\"a}sentieren sich die Dom{\"a}nen als dynamische Bereiche, d.h. sie k{\"o}nnen in ihrer Auspr{\"a}gung reguliert werden. In dieser Arbeit wird die Hypothese best{\"a}tigt, dass Phosphodiesterasen eine wichtige Rolle in der Kompartimentierung von cAMP spielen, die Gruppe jedoch inhomogener ist, als bislang angenommen. Die Gradienten-Bildung l{\"a}sst sich nicht bei jeder Phosphodiesterase darstellen (PDE8A1). Einige Phosphodiesterasen (PDE2A3) jedoch bilden Kompartimente, die durch externe Stimuli in ihrer Gr{\"o}ße reguliert werden k{\"o}nnen. Die Arbeit legt den Grundstein zur breiteren Charakterisierung des spezifischen Einflusses weiterer PDEs auf cAMP-Kompartimentierung, welches nicht nur das Verst{\"a}ndnis der Kompartimentierungs-Strategien voranbringt, sondern auch essentiell f{\"u}r das Verst{\"a}ndnis der Pathophysiologie zahlreicher Krankheitsbilder, aber auch f{\"u}r das Verst{\"a}ndnis bereits angewandter aber auch potentiell neuer Medikamente ist.}, subject = {Cyclo-AMP}, language = {de} } @phdthesis{Kreutzmann2021, author = {Kreutzmann, Moritz Paul}, title = {Untersuchung von Markern f{\"u}r oxidativen Stress und DNA-Sch{\"a}den bei arterieller Hypertonie}, doi = {10.25972/OPUS-24338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243380}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Patienten mit arterieller Hypertonie haben ein erh{\"o}htes Risiko eine Tumorerkrankung, insbesondere Nierenzellkarzinome, zu entwickeln. Die arterielle Hypertonie ist {\"u}ber die Entstehung von oxidativem Stress mit der Entwicklung von DNA-Sch{\"a}den verkn{\"u}pft, wobei ein hochreguliertes Renin-Angiotensin-Aldosteron-System (RAAS) eine entscheidende Rolle einnimmt. Das Ziel dieser Arbeit war es zum einen Hypertoniker (HypAll) und gesunde Kontrollen und zum anderen gut (HypGut) und schlecht (HypSch) eingestellte Hypertoniker unter Ber{\"u}cksichtigung der eingenommenen Antihypertensiva bez{\"u}glich ihrer Level an oxidativem Stress und DNA-Sch{\"a}den zu vergleichen. Zus{\"a}tzlich erfolgte im Rahmen einer L{\"a}ngsschnittanalyse der intraindividuelle Vergleich unter den Hypertonikern. Hierf{\"u}r erfolgte die Bestimmung von SHp, D-ROM und 3-Nitrotyrosin als Marker f{\"u}r oxidativen Stress im Plasma, von 8-oxodG, 15-F2t-Isoprostan und Malondialdehyd als Marker f{\"u}r oxidativen Stress im Urin und von γ-H2AX und Mikrokernen als Marker f{\"u}r DNA-Sch{\"a}den in Lymphozyten. Dabei konnte ein erh{\"o}hter oxidativer Stress in der HypAll-Gruppe verglichen zu den Kontrollen anhand aller Marker f{\"u}r oxidativen Stress mit Ausnahme von Malondialdehyd festgestellt werden. Nach Altersadjustierung zeigte sich dieser Gruppenunterschied nur noch f{\"u}r die Proteinstressmarker SHp und 3-Nitrotyrosin signifikant. Bez{\"u}glich der Marker f{\"u}r DNA-Sch{\"a}den ergab sich kein Unterschied zwischen HypAll und Kontrollen. Ebenso zeigte sich kein signifikanter Unterschied in den Leveln f{\"u}r oxidativen Stress und DNA-Sch{\"a}den zwischen der HypGut- und HypSch-Gruppe. Zuletzt konnte im Rahmen der L{\"a}ngsschnittstudie ein positiver Zusammenhang zwischen der Entwicklung des Blutdrucks und des oxidativen Stresses anhand der Ver{\"a}nderung von D-ROM und des systolischen Blutdrucks beobachtet werden. Die teils nicht-signifikanten und teils mangelnden Unterschiede zwischen HypAll und Kontrollen sowie zwischen HypGut und HypSch sind am ehesten durch das besondere Patientengut, welches sich auch grundlegend von dem anderer vergleichbarer Studien unterscheidet, erkl{\"a}rbar. Die Patienten mit therapieresistenter Hypertonie (TRH) zeichnen sich durch eine langj{\"a}hrige Einnahme zahlreicher Antihypertensiva aus. Diese, insbesondere die RAAS-wirksamen, besitzen eine {\"u}ber die reine Blutdrucksenkung hinausgehende antioxidative und antigenotoxische Wirkung, welche vermutlich zu einer Angleichung der Level f{\"u}r oxidativen Stress und DNA-Sch{\"a}den gef{\"u}hrt hat. Um die Dynamik der Biomarker und den Einfluss der Antihypertensiva auf oxidativen Stress und DNA-Sch{\"a}den besser zu verstehen, sind weitere Studien {\"u}ber einen l{\"a}ngeren Beobachtungszeitraum sowie mit zus{\"a}tzlich therapienaiven Hypertonikern sinnvoll. Die weitere Erforschung von Biomarkern, um sie im klinischen Alltag zur Verbesserung der Patientenbehandlung einsetzen zu k{\"o}nnen, ist notwendig.}, subject = {Oxidativer Stress}, language = {de} } @phdthesis{Reimann2021, author = {Reimann, Hauke}, title = {Schicksal von Mikrokernen bzw. mikrokernhaltigen Zellen und Bedeutung von Mikrokernen als Biomarker}, doi = {10.25972/OPUS-24010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240109}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Mikrokerne sind als wichtiger Biomarker in der Gentoxizit{\"a}tsforschung seit langer Zeit etabliert und ihre Bildung ist mechanistisch gut verstanden, wohingegen das Mikrokernschicksal und die genaue Funktion von Mikrokernen in der Kanzerogenese unzureichend erforscht sind. Um das Schicksal von Mikrokernen und mikrokernhaltigen Zellen {\"u}ber einen l{\"a}ngeren Zeitraum zu untersuchen, wurden HeLa-Zellen, die mit einem GFP-markierten Histon H2B transfiziert worden sind, mittels Lebendzellmikroskopie nach Behandlung mit verschiedenen gentoxischen Agenzien f{\"u}r 96 h untersucht. Parameter wie die Mitose- oder Zelltodrate wurden dabei ebenso wie das Schicksal der Mikrokerne dokumentiert. W{\"a}hrend Persistenz und Reinkorporation von Mikrokernen h{\"a}ufig beobachtet wurden, waren Degradation und Auswurf von Mikrokernen selten bis gar nicht zu sehen. Auch konnte ein Teil der mikrokernhaltigen Zellen {\"u}ber mehrere Zellteilungen persistieren und proliferieren, wodurch die in Mikrokernen manifestierte chromosomale Instabilit{\"a}t unver{\"a}ndert bleiben kann. Ein eindeutiger Substanzeinfluss auf das Mikrokernschicksal konnte nicht ausgemacht werden. Extrusion sollte weiterhin durch Behandlung mit Hydroxyurea oder Cytochalasin B in Kombination mit gentoxischer Behandlung induziert werden, es wurde jedoch kein Effekt auf die Extrusionsrate beobachtet. Degradation wurde mittels γH2AX-Antik{\"o}rperf{\"a}rbung und transduziertem dsRed-markierten Autophagiemarker LC3B in HeLa-H2B-GFP-Zellen untersucht. Trotz erh{\"o}hter DNA-Degradation in Mikrokernen wurde nur selten eine Ko-Lokalisierung mit LC3B beobachtet. Daf{\"u}r gab es in HeLa-H2B-GFP-Zellen, die zus{\"a}tzlich mit dsRed markierten Kernmembranmarker Lamin B1 transduziert worden sind, Anzeichen f{\"u}r eine eingeschr{\"a}nkte Mikrokernmembranintegrit{\"a}t. Weiterhin wurden Zytokinese-Block Mikrokerntests nach Behandlung mit Thebain mit und ohne metabolische Aktivierung sowie Celecoxib und Celecoxibderivaten durchgef{\"u}hrt. Hierbei wurde nach Thebainbehandlung nur ohne metabolische Aktivierung und bei Anwesenheit von Zytotoxizit{\"a}t mehr Mikrokerne gefunden, w{\"a}hrend nach Behandlung mit Celecoxib und Celecoxibderivaten kein Anstieg beobachtet wurde. Zus{\"a}tzlich wurde der Einfluss durch neurodegenerative Ver{\"a}nderungen auf Mundschleimhautzellen in zwei großen Kohorten untersucht, wobei keine Effekte auf die H{\"a}ufigkeit von Mikrokernen oder mikrokernhaltigen Zellen zugeordnet werden konnten, w{\"a}hrend es teilweise bei Parametern, die auf Zytotoxizit{\"a}t hindeuten, zu Ver{\"a}nderungen kam. Es konnte insgesamt gezeigt werden, dass Mikrokerne und mikrokernhaltige Zellen zus{\"a}tzlich zu ihrer Funktion als Biomarker {\"u}ber wenigstens mehrere Zellteilungen bestehen bleiben k{\"o}nnen. Auf diese Weise k{\"o}nnen sie z. B. {\"u}ber Chromothripsis zu einer beschleunigten Kanzerogenese f{\"u}hren, was zu einer schlechten Prognose f{\"u}r Krebspatienten f{\"u}hren kann.}, subject = {Kleinkern}, language = {de} } @phdthesis{Classen2021, author = {Claßen, Alexandra}, title = {The ERK-cascade in the pathophysiology of cardiac hypertrophy}, doi = {10.25972/OPUS-22966}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229664}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {ERK1/2 are known key players in the pathophysiology of heart failure, but the members of the ERK cascade, in particular Raf1, can also protect the heart from cell death and ischemic injury. An additional autophosphorylation (ERK1 at Thr208, ERK2 at Thr188) empowers ERK1/2 translocation to the nucleus and phosphorylation of nuclear targets which take part in the development of cardiac hypertrophy. Thereby, targeting this additional phosphorylation is a promising pharmacological approach. In this thesis, an in silico model of ERK cascade in the cardiomyocyte is introduced. The model is a semi-quantitive model and its behavior was tested with different softwares (SQUAD and CellNetAnalyzer). Different phosphorylation states of ERK1/2 as well as different stimuli can be reproduced. The different types of stimuli include hypertrophic as well as non-hypertrophic stimuli. With the introduced in-silico model time courses and synergistic as well as antagonistic receptor stimuli combinations can be predicted. The simulated time courses were experimentally validated. SQUAD was mainly used to make predictions about time courses and thresholds, whereas CNA was used to analyze steady states and feedback loops. Furthermore, new targets of ERK1/2 which partially contribute, also in the formation of cardiac hypertrophy, were identified and the most promising of them were illuminated. Important further targets are Caspase 8, GAB2, Mxi-2, SMAD2, FHL2 and SPIN90. Cardiomyocyte gene expression data sets were analyzed to verify involved components and to find further significantly altered genes after induced hypertrophy with TAC (transverse aortic constriction). Changes in the ultrastructure of the cardiomyocyte are the final result of induced hypertrophy.}, subject = {Herzhypertrophie}, language = {en} } @phdthesis{Kramer2021, author = {Kramer, Sofia}, title = {Hemmung pathologischer kardialer Hypertrophie {\"u}ber das Dimer-Interface von ERK1/2}, doi = {10.25972/OPUS-23373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233739}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die extrazellul{\"a}r Signal-regulierten Kinasen 1 und 2 (ERK1/2) spielen eine zentrale Rolle bei der Vermittlung kardialer Hypertrophie und dem Zell{\"u}berleben. Hypertrophe Stimuli aktivieren ERK1/2, triggern deren Dimerisierung und in der Folge die ERK188-Autophosphorylierung. Diese neu entdeckte Autophosphorylierung ist eine Voraussetzung f{\"u}r den nukle{\"a}ren Import von ERK1/2 und f{\"u}hrt zum Entstehen pathologischer kardialer Hypertrophie. Da das Dimer Interface von ERK eine m{\"o}gliche Zielstruktur darstellt, um selektiv die nukle{\"a}ren Signalwege von ERK zu unterbrechen, wurde untersucht, ob man mit Hemmung der ERK-Dimerisierung eine therapeutische M{\"o}glichkeit hat, um pathologische kardiale Hypertrophie zu verhindern. Dazu wurden verschiedene ERK2 Mutanten und Peptide generiert, um die ERK-Dimerisierung zu verhindern. Die Effekte dieser Konstrukte auf die ERK-Dimerisierung und den Kernimport wurden in verschiedenen Zelltypen mittels Fluoreszenzmikroskopie, Co-Immunopr{\"a}zipitationen und Duolink proximity ligation assays getestet. Es konnte gezeigt werden, dass die Peptide effektiv die ERK-ERK Interaktion nach Stimulation mit Phenylephrin und/oder Carbachol verhindern. Zus{\"a}tzlich reduzierten die Peptide ERKT188-Phosphorylierung und in der Folge den ERK-Import in den Nukleus und Kardiomyozytenhypertrophie. Normale ERK-Aktivierung wurde jedoch durch die Peptide nicht verhindert. Insgesamt konnte gezeigt werden, dass das ERK-Dimer Interface eine wertvolle Zielstruktur ist, mit dem man nukle{\"a}re ERK1/2 Signalwege selektiv unterbrechen und damit effektiv Kardiomyozytenwachstum reduzieren kann, ohne gleichzeitig das Zell{\"u}berleben zu gef{\"a}hrden.}, subject = {Dimerisierung}, language = {de} } @phdthesis{Schott2021, author = {Schott, Lea Marie}, title = {In vitro Untersuchung zur Genotoxizit{\"a}t ausgew{\"a}hlter Pyrrolizidinalkaloide}, doi = {10.25972/OPUS-24171}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241716}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Pyrrolizidinalkaloide (PA) sind sekund{\"a}re Pflanzenstoffe, welche {\"u}ber Nahrungsmittel in den menschlichen Organismus gelangen k{\"o}nnen. Zahlreiche Studien belegen, dass PA in der Leber verstoffwechselt und dabei in aktive genotoxische Metabolite umgewandelt werden. Diese verursachen vor allem in der Leber zellul{\"a}re Sch{\"a}den, was sich klinisch in Form einer hepatischen ven{\"o}sen okklusiven Leberkrankheit, aber auch in der Entstehung von Tumoren zeigt. Die vorliegende Arbeit testet das genotoxische Potential der drei PA Lasiocarpin, Senecionin und Seneciphyllin anhand der Leberzelllinie Huh6 mit Hilfe des Mikrokerntests. Dar{\"u}ber hinaus wird die Wirkung von Lasiocarpin auf den intrazellul{\"a}ren Glutathion-Gehalt, die Superoxidproduktion und das mitochondriale Membranpotential analysiert. Zudem werden sowohl der eventuell negative Einfluss einer Glutathion Depletion, als auch die m{\"o}glicherweise sch{\"u}tzenden Effekte des pflanzlichen Antioxidans Delphinidin in Bezug auf die Genotoxizit{\"a}t von Lasiocarpin untersucht. Es konnte gezeigt werden, dass alle drei ausgew{\"a}hlten PA einen signifikanten Anstieg der Mikrokernfrequenz bewirken.Unsere Messungen zeigten f{\"u}r Lasiocarpin eine dezente Reduktion des Glutathion Gehalts. Dagegen f{\"u}hrte eine Glutathion-Depletion in den Huh6 Zellen zu keiner Steigerung der Genotoxizit{\"a}t von Lasiocarpin. In Kombination mit dem Antioxidans Delphinidin zeigte sich f{\"u}r Lasiocarpin eine signifikante Reduktion der Mikrokernfrequenz. Abschließend ist anzumerken, dass in Zukunft vor allem die Wechselwirkung der PA untereinander und mit anderen (Pflanzen-)bestandteilen f{\"u}r eine verbesserte Risikoabsch{\"a}tzung der PA-Exposition untersucht werden sollte.}, subject = {Pyrrolizidinalkaloide}, language = {de} } @phdthesis{Anton2021, author = {Anton, Selma}, title = {Characterization of cAMP nanodomains surrounding the human Glucagon-like peptide 1 receptor using FRET-based reporters}, doi = {10.25972/OPUS-19069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190695}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cyclic adenosine monophosphate (cAMP), the ubiquitous second messenger produced upon stimulation of GPCRs which couple to the stimulatory GS protein, orchestrates an array of physiological processes including cardiac function, neuronal plasticity, immune responses, cellular proliferation and apoptosis. By interacting with various effector proteins, among others protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), it triggers signaling cascades for the cellular response. Although the functional outcomes of GSPCR-activation are very diverse depending on the extracellular stimulus, they are all mediated exclusively by this single second messenger. Thus, the question arises how specificity in such responses may be attained. A hypothesis to explain signaling specificity is that cellular signaling architecture, and thus precise operation of cAMP in space and time would appear to be essential to achieve signaling specificity. Compartments with elevated cAMP levels would allow specific signal relay from receptors to effectors within a micro- or nanometer range, setting the molecular basis for signaling specificity. Although the paradigm of signaling compartmentation gains continuous recognition and is thoroughly being investigated, the molecular composition of such compartments and how they are maintained remains to be elucidated. In addition, such compartments would require very restricted diffusion of cAMP, but all direct measurements have indicated that it can diffuse in cells almost freely. In this work, we present the identification and characterize of a cAMP signaling compartment at a GSPCR. We created a F{\"o}rster resonance energy transfer (FRET)-based receptor-sensor conjugate, allowing us to study cAMP dynamics in direct vicinity of the human glucagone-like peptide 1 receptor (hGLP1R). Additional targeting of analogous sensors to the plasma membrane and the cytosol enables assessment of cAMP dynamics in different subcellular regions. We compare both basal and stimulated cAMP levels and study cAMP crosstalk of different receptors. With the design of novel receptor nanorulers up to 60nm in length, which allow mapping cAMP levels in nanometer distance from the hGLP1R, we identify a cAMP nanodomain surrounding it. Further, we show that phosphodiesterases (PDEs), the only enzymes known to degrade cAMP, are decisive in constraining cAMP diffusion into the cytosol thereby maintaining a cAMP gradient. Following the discovery of this nanodomain, we sought to investigate whether downstream effectors such as PKA are present and active within the domain, additionally studying the role of A-kinase anchoring proteins (AKAPs) in targeting PKA to the receptor compartment. We demonstrate that GLP1-produced cAMP signals translate into local nanodomain-restricted PKA phosphorylation and determine that AKAP-tethering is essential for nanodomain PKA. Taken together, our results provide evidence for the existence of a dynamic, receptor associated cAMP nanodomain and give prospect for which key proteins are likely to be involved in its formation. These conditions would allow cAMP to exert its function in a spatially and temporally restricted manner, setting the basis for a cell to achieve signaling specificity. Understanding the molecular mechanism of cAMP signaling would allow modulation and thus regulation of GPCR signaling, taking advantage of it for pharmacological treatment.}, language = {en} } @phdthesis{Schihada2021, author = {Schihada, Hannes}, title = {Novel optical methods to monitor G-protein-coupled receptor activation in microtiter plates}, doi = {10.25972/OPUS-17541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {G-protein-coupled receptors (GPCRs) regulate diverse physiological processes in the human body and represent prime targets in modern drug discovery. Engagement of different ligands to these membrane-embedded proteins evokes distinct receptor conformational rearrangements that facilitate subsequent receptor-mediated signalling and, ultimately, enable cellular adaptation to altered environmental conditions. Since the early 2000s, the technology of resonance energy transfer (RET) has been exploited to assess these conformational receptor dynamics in living cells and real time. However, to date, these conformational GPCR studies are restricted to single-cell microscopic setups, slowing down the discovery of novel GPCR-directed therapeutics. In this work, we present the development of a novel generalizable high-throughput compatible assay for the direct measurement of GPCR activation and deactivation. By screening a variety of energy partners for fluorescence (FRET) and bioluminescence resonance energy transfer (BRET), we identified a highly sensitive design for an α2A-adrenergic receptor conformational biosensor. This biosensor reports the receptor's conformational change upon ligand binding in a 96-well plate reader format with the highest signal amplitude obtained so far. We demonstrate the capacity of this sensor prototype to faithfully quantify efficacy and potency of GPCR ligands in intact cells and real time. Furthermore, we confirm its universal applicability by cloning and validating five further equivalent GPCR biosensors. To prove the suitability of this new GPCR assay for screening purposes, we measured the well-accepted Z-factor as a parameter for the assay quality. All tested biosensors show excellent Z-factors indicating outstanding assay quality. Furthermore, we demonstrate that this assay provides excellent throughput and presents low rates of erroneous hit identification (false positives and false negatives). Following this phase of assay development, we utilized these biosensors to understand the mechanism and consequences of the postulated modulation of parathyroid hormone receptor 1 (PTHR1) through receptor activity-modifying protein 2 (RAMP2). We found that RAMP2 desensitizes PTHR1, but not the β2-adrenergic receptor (β2AR), for agonist-induced structural changes. This generalizable sensor design offers the first possibility to upscale conformational GPCR studies, which represents the most direct and unbiased approach to monitor receptor activation and deactivation. Therefore, this novel technology provides substantial advantages over currently established methods for GPCR ligand screening. We feel confident that this technology will aid the discovery of novel types of GPCR ligands, help to identify the endogenous ligands of so-called orphan GPCRs and deepen our understanding of the physiological regulation of GPCR function.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Kodandaraman2021, author = {Kodandaraman, Geema}, title = {Influence of insulin-induced oxidative stress in genotoxicity and disease}, doi = {10.25972/OPUS-24200}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Hormones are essential components in the body and their imbalance leads to pathological consequences. T2DM, insulin resistance and obesity are the most commonly occurring lifestyle diseases in the past decade. Also, an increased cancer incidence has been strongly associated with obese and T2DM patients. Therefore, our aim was to study the influence of high insulin levels in accumulating DNA damage in in vitro models and patients, through the induction of oxidative stress. The primary goal of this study was to analyze the genotoxicity induced by the combined action of two endogenous hormones (insulin and adrenaline) with in vitro models, through the induction of micronuclei and to see if they cause an additive increase in genomic damage. This is important for multifactorial diseases having high levels of more than one hormone, such as metabolic syndrome and conditions with multiple pathologies (e.g., T2DM along with high stress levels). Furthermore, the combination of insulin and the pharmacological inhibition of the tumor suppressor gene: PTEN, was to be tested in in vitro models for their genotoxic effect and oxidative stress inducing potential. As the tumor suppressor gene: PTEN is downregulated in PTEN associated syndromes and when presented along with T2DM and insulin resistance, this may increase the potential to accumulate genomic damage. The consequences of insulin action were to be further elucidated by following GFP-expressing cells in live cell-imaging to observe the ability of insulin, to induce micronuclei and replicative stress. Finally, the detrimental potential of high insulin levels in obese patients with hyperinsulinemia and pre-diabetes was to be studied by analyzing markers of oxidative stress and genomic damage. In summary, the intention of this work was to understand the effects of high insulin levels in in vitro and in patients to understand its relevance for the development of genomic instability and thus an elevated cancer risk.}, subject = {Insulin}, language = {en} }