@article{EndesfelderMalkuschFlottmannetal.2011, author = {Endesfelder, Ulrike and Malkusch, Sebastian and Flottmann, Benjamin and Mondry, Justine and Liguzinski, Piotr and Verveer, Peter J. and Heilemann, Mike}, title = {Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74896}, year = {2011}, abstract = {We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy.}, subject = {Super-Resolution Microscopy}, language = {en} } @article{EndesfelderMalkuschFlottmannetal.2011, author = {Endesfelder, Ulrike and Malkusch, Sebastian and Flottmann, Benjamin and Mondry, Justine and Liguzinski, Piotr and Verveer, Peter J. and Heilemann, Mike}, title = {Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy}, series = {Molecules}, volume = {16}, journal = {Molecules}, number = {4}, doi = {10.3390/molecules16043106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134080}, pages = {3106-3118}, year = {2011}, abstract = {We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy.}, language = {en} } @phdthesis{Heidbreder2012, author = {Heidbreder, Meike}, title = {Association and Activation of TNF-Receptor I Investigated with Single-Molecule Tracking and Super-Resolution Microscopy in Live Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73191}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Cellular responses to outer stimuli are the basis for all biological processes. Signal integration is achieved by protein cascades, recognizing and processing molecules from the environment. Factors released by pathogens or inflammation usually induce an inflammatory response, a signal often transduced by Tumour Necrosis Factor alpha (TNF). TNFα receptors TNF-R1 and TNF-R2 can in turn lead to apoptosis or proliferation via NF-B. These processes are closely regulated by membrane compartimentalization, protein interactions and trafficking. Fluorescence microscopy offers a reliable and non-invasive method to probe these cellular events. However, some processes on a native membrane are not resolvable, as they are well below the diffraction limit of microscopy. The recent development of super-resolution fluorescence microscopy methods enables the observation of these cellular players well below this limit: by localizing, tracking and counting molecules with high spatial and temporal resolution, these new fluorescence microscopy methods offer a previously unknown insight into protein interactions at the near-molecular level. Direct stochastic optical reconstruction microscopy (dSTORM) utilizes the reversible, stochastic blinking events of small commercially available fluorescent dyes, while photoactivated localization microscopy (PALM) utilizes phototransformation of genetically encoded fluorescent proteins. By photoactivating only a small fraction of the present fluorophores in each observation interval, single emitters can be localized with high precision and a super-resolved image can be reconstructed. Quantum Dot Triexciton imaging (QDTI) utilizes the three-photon absorption (triexcitonic) properties of quantum dots (QD) and to achieve a twofold resolution increase using conventional confocal microscopes. In this thesis, experimental approaches were implemented to achieve super-resolution microscopy in fixed and live-cells to study the spatial and temporal dynamics of TNF and other cellular signaling events. We introduce QDTI to study the three-dimensional cellular distribution of biological targets, offering an easy method to achieve resolution enhancement in combination with optical sectioning, allowing the preliminary quantification of labeled proteins. As QDs are electron dense, QDTI can be used for correlative fluorescence and transmission electron microscopy, proving the versatility of QD probes. Utilizing the phototransformation properties of fluorescent proteins, single-receptor tracking on live cells was achieved, applying the concept of single particle tracking PALM (sptPALM) to track the dynamics of a TNF-R1-tdEos chimera on the membrane. Lateral receptor dynamics can be tracked with high precision and the influences of ligand addition or lipid disruption on TNF-R1 mobility was observed. The results reveal complex receptor dynamics, implying internalization processes in response to TNFα stimulation and a role for membrane domains with reduced fluidity, so-called lipid raft domains, in TNF-R1 compartimentalization prior or post ligand induction. Comparisons with previously published FCS data show a good accordance, but stressing the increased data depth available in sptPALM experiments. Additionally, the active transport of NF-κB-tdEos fusions was observed in live neurons under chemical stimulation and/or inhibition. Contrary to phototransformable proteins that need no special buffers to exhibit photoconversion or photoactivation, dSTORM has previously been unsuitable for in vivo applications, as organic dyes relied on introducing the probes via immunostaining in concert with a reductive, oxygen-free medium for proper photoswitching behaviour. ATTO655 had been previously shown to be suitable for live-cell applications, as its switching behavior can be catalyzed by the reductive environment of the cytoplasm. By introducing the cell-permeant organic dye via a chemical tag system, a high specificity and low background was achieved. Here, the labeled histone H2B complex and thus single nucleosome movements in a live cell can be observed over long time periods and with ~20 nm resolution. Implementing these new approaches for imaging biological processes with high temporal and spatial resolution provides new insights into the dynamics and spatial heterogeneities of proteins, further elucidating their function in the organism and revealing properties that are usually only detectable in vitro.  }, subject = {Fluoreszenzmikrosopie}, language = {en} } @phdthesis{Wolter2014, author = {Wolter, Steve}, title = {Single-molecule localization algorithms in super-resolution microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Lokalisationsmikroskopie ist eine Methodenklasse der superaufl{\"o}senden Fluoreszenzmikroskopie, deren Methoden sich durch stochastische zeitliche Isolation der Fluoreszenzemission auszeichnen. Das Blinkverhalten von Fluorophoren wird so ver{\"a}ndert, dass gleichzeitige Aktivierung von einander nahen Fluorophoren unwahrscheinlich ist. Bekannte okalisationsmikroskopische Methoden umfassen dSTORM, STORM, PALM, FPALM, oder GSDIM. Lokalisationsmikroskopie ist von hohem biologischem Interesse, weil sie die Aufl{\"o}sung des Fluoreszenzmikroskops bei minimalem technischem Aufwand um eine Gr{\"o}ßenordnung verbessert. Der verbundene Rechenaufwand ist allerdings erheblich, da Millionen von Fluoreszenzemissionen einzeln mit Nanometergenauigkeit lokalisiert werden m{\"u}ssen. Der Rechen- und Implementationsaufwand dieser Auswertung hat die Verbreitung der superaufl{\"o}senden Mikroskopie lange verz{\"o}gert. Diese Arbeit beschreibt meine algorithmische Grundstruktur f{\"u}r die Auswertung lokalisationsmikroskopischer Daten. Die Echtzeitf{\"a}higkeit, d.h. eine Auswertegeschwindigkeit oberhalb der Datenaufnahmegeschwindigkeit an normalen Messaufbauten, meines neuartigen und quelloffenen Programms wird demonstriert. Die Geschwindigkeit wird auf verbrauchermarktg{\"a}ngigen Prozessoren erreicht und dadurch spezialisierte Rechenzentren oder der Einsatz von Grafikkarten vermieden. Die Berechnung wird mit dem allgemein anerkannten Gaussschen Punktantwortmodell und einem Rauschmodell auf Basis der gr{\"o}ßten Poissonschen Wahrscheinlichkeit durchgef{\"u}hrt. Die algorithmische Grundstruktur wird erweitert, um robuste und optimale Zweifarbenauswertung zu realisieren und damit korrelative Mikroskopie zwischen verschiedenen Proteinen und Strukturen zu erm{\"o}glichen. Durch den Einsatz von kubischen Basissplines wird die Auswertung von dreidimensionalen Proben vereinfacht und stabilisiert, um pr{\"a}zisem Abbilden von mikrometerdicken Proben n{\"a}her zu kommen. Das Grenzverhalten von Lokalisationsalgorithmen bei hohen Emissionsdichten wird untersucht. Abschließend werden Algorithmen f{\"u}r die Anwendung der Lokalisationsmikroskopie auf verbreitete Probleme der Biologie aufgezeigt. Zellul{\"a}re Bewegung und Motilit{\"a}t werden anhand der in vitro Bewegung von Myosin-Aktin-Filamenten studiert. Lebendzellbildgebung mit hellen und stabilen organischen Fluorophoren wird mittels SNAP-tag-Fusionsproteinen realisiert. Die Analyse des Aufbaus von Proteinklumpen zeigt, wie Lokalisationsmikroskopie neue quantitative Ans{\"a}tze jenseits reiner Bildgebung bietet.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @phdthesis{Klein2014, author = {Klein, Teresa}, title = {Lokalisationsmikroskopie f{\"u}r die Visualisierung zellul{\"a}rer Strukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99260}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die Einf{\"u}hrung der Fluoreszenzmikroskopie erm{\"o}glicht es, Strukturen in Zellen spezifisch und mit hohem Kontrast zu markieren und zu untersuchen. Da die Lichtmikroskopie jedoch in ihrer Aufl{\"o}sung begrenzt ist, bleiben Strukturinformationen auf molekularer Ebene verborgen. Diese als Beugungsgrenze bekannte Limitierung, kann mit modernen Verfahren umgangen werden. Die Lokalisationsmikroskopie nutzt hierf{\"u}r photoschaltbare Fluorophore, deren Fluoreszenz r{\"a}umlich und zeitlich separiert wird, um so einzelne Fluorophore mit Nanometer-Genauigkeit lokalisieren zu k{\"o}nnen. Aus tausenden Einzelmolek{\"u}l-Lokalisationen wird ein k{\"u}nstliches, hochaufgel{\"o}stes Bild rekonstruiert. Die hochaufl{\"o}sende Mikroskopie ist grade f{\"u}r die Lebendzell-Beobachtung ein wertvolles Werkzeug, um subzellul{\"a}re Strukturen und Proteindynamiken jenseits der Beugungsgrenze unter physiologischen Bedingungen untersuchen zu k{\"o}nnen. Als Marker k{\"o}nnen sowohl photoaktivierbare fluoreszierende Proteine als auch photoschaltbare organische Fluorophore eingesetzt werden. W{\"a}hrend die Markierung mit fluoreszierenden Proteinen einfach zu verwirklichen ist, haben organische Farbstoffe hingegen den Vorteil, dass sie auf Grund der h{\"o}heren Photonenausbeute eine pr{\"a}zisere Lokalisation erlauben. In lebenden Zellen wird die Markierung von Strukturen mit synthetischen Fluorophoren {\"u}ber sogenannte chemische Tags erm{\"o}glicht. Diese sind olypeptidsequenzen, die genetisch an das Zielprotein fusioniert werden und anschließend mit Farbstoff-gekoppelten Substraten gef{\"a}rbt werden. An der Modellstruktur des Histonproteins H2B werden in dieser Arbeit Farbstoffe in Kombination mit chemischen Tags identifiziert, die erfolgreich f{\"u}r die Hochaufl{\"o}sung mit direct stochastic optical reconstruction microscopy (dSTORM) in lebenden Zellen eingesetzt werden k{\"o}nnen. F{\"u}r besonders geeignet erweisen sich die Farbstoffe Tetramethylrhodamin, 505 und Atto 655, womit der gesamte spektrale Bereich vertreten ist. Allerdings k{\"o}nnen unspezifische Bindung und Farbstoffaggregation ein Problem bei der effizienten Markierung in lebenden Zellen darstellen. Es wird gezeigt, dass die Beschichtung der Glasoberfl{\"a}che mit Glycin die unspezifische Adsorption der Fluorophore erfolgreich minimieren kann. Weiterhin wird der Einfluss des Anregungslichtes auf die lebende Zelle diskutiert. Es werden Wege beschrieben, um die Photosch{\"a}digung m{\"o}glichst gering zu halten, beispielsweise durch die Wahl eines Farbstoffs im rotem Anregungsbereich. Die M{\"o}glichkeit lebende Zellen mit photoschaltbaren organischen Fluorophoren spezifisch markieren zu k{\"o}nnen, stellt einen großen Gewinn f{\"u}r die Lokalisationsmikroskopie dar, bei der urspr{\"u}nglich farbstoffgekoppelte Antik{\"o}rper zum Einsatz kamen. Diese Markierungsmethode wird in dieser Arbeit eingesetzt, um das Aggregationsverhalten von Alzheimer verursachenden � -Amyloid Peptiden im Rahmen einer Kooperation zu untersuchen. Es werden anhand von HeLa Zellen verschiedene beugungsbegrenzte Morphologien der Aggregate aufgekl{\"a}rt. Dabei wird gezeigt, dass intrazellul{\"a}r vorhandene Peptide gr{\"o}ßere Aggregate formen als die im extrazellul{\"a}ren Bereich. In einer zweiten Kollaboration wird mit Hilfe des photoaktivierbaren Proteins mEos2 und photoactivated localization microscopy (PALM) die strukturelle Organisation zweier Flotillinproteine in der Membran von Bakterien untersucht. Diese Proteine bilden zwei Cluster mit unterschiedlichen Durchmessern, die mit Nanometer-Genauigkeit bestimmt werden konnten. Es wurde außerdem festgestellt, dass beide Proteine in unterschiedlichen Anzahlen im Bakterium vorliegen.}, subject = {Hochaufl{\"o}sendes Verfahren}, language = {de} }