@article{SunStarlyDalyetal.2020, author = {Sun, Wei and Starly, Binil and Daly, Andrew C and Burdick, Jason A and Groll, J{\"u}rgen and Skeldon, Gregor and Shu, Wenmiao and Sakai, Yasuyuki and Shinohara, Marie and Nishikawa, Masaki and Jang, Jinah and Cho, Dong-Woo and Nie, Minghao and Takeuchi, Shoji and Ostrovidov, Serge and Khademhosseini, Ali and Kamm, Roger D and Mironov, Vladimir and Moroni, Lorenzo and Ozbolat, Ibrahim T}, title = {The bioprinting roadmap}, series = {Biofabrication}, volume = {12}, journal = {Biofabrication}, number = {2}, doi = {10.1088/1758-5090/ab5158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254027}, year = {2020}, abstract = {This bioprinting roadmap features salient advances in selected applications of the technique and highlights the status of current developments and challenges, as well as envisioned advances in science and technology, to address the challenges to the young and evolving technique. The topics covered in this roadmap encompass the broad spectrum of bioprinting; from cell expansion and novel bioink development to cell/stem cell printing, from organoid-based tissue organization to bioprinting of human-scale tissue structures, and from building cell/tissue/organ-on-a-chip to biomanufacturing of multicellular engineered living systems. The emerging application of printing-in-space and an overview of bioprinting technologies are also included in this roadmap. Due to the rapid pace of methodological advancements in bioprinting techniques and wide-ranging applications, the direction in which the field should advance is not immediately clear. This bioprinting roadmap addresses this unmet need by providing a comprehensive summary and recommendations useful to experienced researchers and newcomers to the field.}, language = {en} } @article{HazurDetschKarakayaetal.2020, author = {Hazur, Jonas and Detsch, Rainer and Karakaya, Emine and Kaschta, Joachim and Teßmar, J{\"o}rg and Schneidereit, Dominik and Friedrich, Oliver and Schubert, Dirk W and Boccaccini, Aldo R}, title = {Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique}, series = {Biofabrication}, volume = {12}, journal = {Biofabrication}, number = {4}, doi = {10.1088/1758-5090/ab98e5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254030}, year = {2020}, abstract = {Many different biofabrication approaches as well as a variety of bioinks have been developed by researchers working in the field of tissue engineering. A main challenge for bioinks often remains the difficulty to achieve shape fidelity after printing. In order to overcome this issue, a homogeneous pre-crosslinking technique, which is universally applicable to all alginate-based materials, was developed. In this study, the Young's Modulus after post-crosslinking of selected hydrogels, as well as the chemical characterization of alginate in terms of M/G ratio and molecular weight, were determined. With our technique it was possible to markedly enhance the printability of a 2\% (w/v) alginate solution, without using a higher polymer content, fillers or support structures. 3D porous scaffolds with a height of around 5 mm were printed. Furthermore, the rheological behavior of different pre-crosslinking degrees was studied. Shear forces on cells as well as the flow profile of the bioink inside the printing nozzle during the process were estimated. A high cell viability of printed NIH/3T3 cells embedded in the novel bioink of more than 85\% over a time period of two weeks could be observed.}, language = {en} }