@article{FrankeVilnedaCostaetal.2015, author = {Franke, Katharina and Vilne, Baiba and da Costa, Olivia Prazeres and Rudelius, Martina and Peschel, Christian and Oostendorp, Robert A. J. and Keller, Ulrich}, title = {In vivo hematopoietic Myc activation directs a transcriptional signature in endothelial cells within the bone marrow microenvironment}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {26}, doi = {10.18632/oncotarget.5217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145844}, pages = {21827 -- 21839}, year = {2015}, abstract = {Cancer pathogenesis involves tumor-intrinsic genomic aberrations and tumor-cell extrinsic mechanisms such as failure of immunosurveillance and structural and functional changes in the microenvironment. Using Myc as a model oncogene we established a conditional mouse bone marrow transduction/transplantation model where the conditional activation of the oncoprotein Myc expressed in the hematopoietic system could be assessed for influencing the host microenvironment. Constitutive ectopic expression of Myc resulted in rapid onset of a lethal myeloproliferative disorder with a median survival of 21 days. In contrast, brief 4-day Myc activation by means of the estrogen receptor (ER) agonist tamoxifen did not result in gross changes in the percentage/frequency of hematopoietic lineages or hematopoietic stem/progenitor cell (HSPC) subsets, nor did Myc activation significantly change the composition of the non-hematopoietic microenvironment defined by phenotyping for CD31, ALCAM, and Sca-1 expression. Transcriptome analysis of endothelial CD45-Ter119-cells from tamoxifen-treated MycER bone marrow graft recipients revealed a gene expression signature characterized by specific changes in the Rho subfamily pathway members, in the transcription-translation-machinery and in angiogenesis. In conclusion, intra-hematopoietic Myc activation results in significant transcriptome alterations that can be attributed to oncogene-induced signals from hematopoietic cells towards the microenvironment, e. g. endothelial cells, supporting the idea that even pre-leukemic HSPC highjack components of the niche which then could protect and support the cancer-initiating population.}, language = {en} } @article{AtakLanglhoferSchaeferetal.2015, author = {Atak, Sinem and Langlhofer, Georg and Schaefer, Natascha and Kessler, Denise and Meiselbach, Heike and Delto, Carolyn and Schindelin, Hermann and Villmann, Carmen}, title = {Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia}, series = {Frontiers in Molecular Neuroscience}, volume = {8}, journal = {Frontiers in Molecular Neuroscience}, number = {79}, doi = {10.3389/fnmol.2015.00079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144818}, year = {2015}, abstract = {Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GIyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GIyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GIyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, 1162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.}, language = {en} } @article{RickmanLachAbhyankaretal.2015, author = {Rickman, Kimberly A. and Lach, Francis P. and Abhyankar, Avinash and Donovan, Frank X. and Sanborn, Erica M. and Kennedy, Jennifer A. and Sougnez, Carrie and Gabriel, Stacey B. and Elemento, Olivier and Chandrasekharappa, Settara C. and Schindler, Detlev and Auerbach, Arleen D. and Smogorzewska, Agata}, title = {Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia}, series = {Cell Reports}, volume = {12}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.06.014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151525}, pages = {35 -- 41}, year = {2015}, abstract = {Fanconi anemia (FA) is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs). Mutations in 17 genes (FANCA-FANCS) have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2), UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT.}, language = {en} }