@phdthesis{Dechant2022, author = {Dechant, Moritz Thomas}, title = {Synthese und Struktur-Eigenschaftsbeziehungen neuer Phthalocyanin-Sternmesogene - Ein neues Design f{\"u}r organische, fl{\"u}ssigkristalline Photovoltaikmaterialien}, doi = {10.25972/OPUS-23888}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238888}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Es wurde eine Vielzahl neuer, fl{\"u}ssigkristalliner Phthalocyanin-Sternmesogene synthetisiert. Die Struktur-Eigenschaftsbeziehungen und die thermotropen Eigenschaften neuer Phthalocyanin-Sternmesogene mit Freiraum sowie von sterisch {\"u}berfrachteten Verbindungen wurden insbesondere hinsichtlich der Freiraumf{\"u}llung untersucht. Diesbez{\"u}glich wurde ein neuer supramolekularer, freiraumf{\"u}llender "Klick-Prozess" zwischen einem Molek{\"u}l mit Freiraum und einem sterisch {\"u}berfrachteten Molek{\"u}l mit vier Fullerenen beobachtet. Die photophysikalischen Eigenschaften wurden zudem insbesondere im Hinblick auf die Anwendung f{\"u}r die Organische Photovoltaik untersucht.}, subject = {Phthalocyanin}, language = {de} } @phdthesis{Hegmann2017, author = {Hegmann, Jan}, title = {Lichtstreuende Sol-Gel-Schichten f{\"u}r die Si- D{\"u}nnschichtphotovoltaik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155815}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Ziel dieser Arbeit war es, ein Schichtsystem auf Basis des Sol-Gel-Prozesses zu entwickeln, um Lighttrapping in Si-D{\"u}nnschichtsolarzellen zu erzeugen. Die Grundlage dieses Schichtsystems bilden SiO2-Partikel, die {\"u}ber den St{\"o}ber-Prozess hergestellt werden. Es zeigte sich, dass sich die Rauheit und der Haze der Schichten {\"u}ber die Partikelgr{\"o}ße und Schichtdicke einstellen lassen. Um die mechanische Stabilit{\"a}t der reinen St{\"o}ber-Schichten zu verbessern, kamen verschiedene Binder zum Einsatz. Beste Ergebnisse zeigten Binder basierend auf l{\"o}slichen Vorstufenpulvern, da diese dem St{\"o}ber-Sol beigemischt werden konnten und so Binder und Partikel gleichzeitig aufgebracht werden konnten. Auf diese Weise entstehen mechanisch stabile, lichtstreuende Schichten. Zum Einsatz kam zun{\"a}chst ein TiO2-Binder. Durch eine anschließende Gl{\"a}ttung der St{\"o}ber-TiO2-Streuschichten mit SiO2 entsteht eine defektfreie, aber dennoch raue Oberfl{\"a}che. Zus{\"a}tzlich wird ein betr{\"a}chtlicher Teil des Lichts in große Winkel gestreut. Es konnte gezeigt werden, dass sich auf den SiO2-gegl{\"a}tteten St{\"o}ber-TiO2-Streuschichten ZnO:Al deponieren l{\"a}sst, wobei die elektrischen Eigenschaften von der Dicke der Gl{\"a}ttung abh{\"a}ngen. Auch die elektrischen Eigenschaften der Si-D{\"u}nnschichtsolarzellen h{\"a}ngen von der Gl{\"a}ttung bzw. der Dicke der Gl{\"a}ttung ab. Dies gilt insbesondere f{\"u}r die von der Materialqualit{\"a}t abh{\"a}ngigen Parameter F{\"u}llfaktor FF und offen Klemmenspannung VOC. Insgesamt fallen die Parameter jedoch noch gegen{\"u}ber Referenzzellen auf ge{\"a}tztem Frontkontakt zur{\"u}ck. Vor allem aber wurde die hohe Zellreflexion aufgrund der Glas-TiO2-Grenzfl{\"a}che als prim{\"a}res Problem identifiziert. Dennoch konnte bei einer Gl{\"a}ttungsdicke von 200 nm sehr gutes Lighttrapping beobachtet werden. Verantwortlich hierf{\"u}r ist sehr wahrscheinlich die Großwinkelstreuung der St{\"o}ber-TiO2-Streuschichten. Um die Zellreflexion zu verringern, wurde der Brechungsindex des Binders und der Gl{\"a}ttungsschichten an den Stack aus Substrat, Streuschicht und ZnO:Al-Schicht angepasst. Idee war es, durch Einbringen eines Al2O3-Vorstufenpulvers eine niedrigbrechende Komponente bereitzustellen, um durch Mischung von Al2O3- und TiO2-Vorstufenpulver freie Hand {\"u}ber den Brechungsindex des Binders und der Gl{\"a}ttung zu erhalten. Da sich das Volumenverh{\"a}ltnis von SiO2-Partikeln zu Binder bei verschiedenen Al2O3-TiO2-Verh{\"a}ltnissen nur schwer bestimmen l{\"a}sst, wurde lediglich ein reiner Al2O3-Binder in den Streuschichten eingesetzt. Die Einstellung des Brechungsindex beschr{\"a}nkte sich allein auf die Gl{\"a}ttungsschichten. Um St{\"o}ber-Al2O3-Streuschichten mit hoher Rauigkeit und geringen Defekten zu erzielen, muss das Binder-zu-Partikel-Verh{\"a}ltnis angepasst werden. Beste Ergebnisse ergaben sich bei einem Al2O3-Gehalt von 2\% im Sol. Aufgrund der hohen Rauigkeit besitzen die Streuschichten einen hohen Haze und wegen des geringen Brechungsunterschied zwischen Glas und Binder eine hohe Transmission. Die Gl{\"a}ttung der Streuschichten im Al2O3-TiO2-System ist nur mit Hilfe einer zus{\"a}tzlichen SiO2-Gl{\"a}ttungsschicht und einer reduzierten Dicke auf 50 nm m{\"o}glich. Auf den reinen defektreichen Streuschichten tendieren die Al2O3-TiO2-Schichten selbst zu Rissbildung. Zur Untersuchung der ZnO:Al-Deposition wurde eine Gl{\"a}ttungsdicke von 200 nm gew{\"a}hlt. Die erwies sich als zu gering. Die aufgebrachten ZnO:Al-Schichten wiesen gr{\"o}ßere Poren und kleinere Oberfl{\"a}chendefekte auf. Die Anpassung des Brechungsindex der Gl{\"a}ttungsschichten an die ZnO:Al-Schicht erwies sich nicht als vorteilhaft. Die reine Al2O3-Gl{\"a}ttung zeigt auch nach der ZnO:Al-Deposition die h{\"o}chste Transmission. Die Winkelverteilung des Streulichts der St{\"o}ber-Al2O3-Streuschichten ist gegen{\"u}ber den St{\"o}ber-TiO2-Streuschichten zu kleineren Winkeln verschoben. Dennoch wird ein gr{\"o}ßerer Anteil des Lichts in große Winkel gestreut, als es bei der ge{\"a}tzten ZnO:Al-Referenz der Fall ist. Trotz der Defekte in den ZnO:Al-Schichten konnten auf den St{\"o}ber-Al2O3-Streuschichten funktionierende Tandemzellen hergestellt werden. Der F{\"u}llfaktor und die offene Klemmenspannung fallen nur geringf{\"u}gig hinter die der Referenzzelle zur{\"u}ck. In der Kurzschlussstromdichte machen sich die verringerte Zellreflexion und das sehr gute Lighttrapping bemerkbar, so dass das Niveau der Referenz erreicht werden konnte. Zu beachten ist allerdings, dass gerade im langwelligen Lighttrapping-Spektralbereich die gleiche EQE erreicht wurde, trotz immer noch leicht erh{\"o}hter Zellreflexion. Die letzte Versuchsreihe konnte zeigen, dass die entwickelten Schichten sich sehr gut zur Erzeugung von Lighttrapping in Si-D{\"u}nnschichtsolarzellen eignen.}, subject = {D{\"u}nnschichtsolarzelle}, language = {de} } @phdthesis{ZitzlerKunkel2014, author = {Zitzler-Kunkel, Andr{\´e}}, title = {Funktionale Merocyaninfarbstoffe: Synthese, molekulare und Selbstorganisationseigenschaften sowie ihre Anwendung in der organischen Photovoltaik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Analog zu den auf hochgeordneten Farbstoffarchitekturen in den biologischen Photosyntheseapparaten basierenden Energiekonversionssystemen sollte die exakte Einstellung zwischenmolekularer Wechselwirkungen auch in k{\"u}nstlichen Halbleitern eine entscheidende Rolle f{\"u}r die Weiterentwicklung organischer Elektronikmaterialien spielen. F{\"u}r eine derartige, pr{\"a}zise Steuerung der nanoskaligen Anordnung in organischen Materialien erscheinen Merocyaninfarbstoffe wegen ihrer hochgerichteten, dipolaren Aggregation {\"a}ußerst aussichtsreich. In diesem Zusammenhang war das Ziel der vorliegenden Arbeit die Ausnutzung funktionaler, stark selbstorganisierender Merocyanine, um eine gezielte Beeinflussung der Morphologie in der aktiven Schicht von BHJ-Solarzellen zu erreichen. Hierzu sollte zun{\"a}chst eine umfangreiche Serie komplexer Merocyanine synthetisiert und vollst{\"a}ndig charakterisiert werden. Im Folgenden wurde angestrebt, die optischen und elektrochemischen Eigenschaften der molekular gel{\"o}sten Farbstoffe zu bestimmen und f{\"u}r ausgew{\"a}hlte, geeignete Strukturen das Selbstorganisationsverhalten im Detail zu studieren. Zuletzt sollte durch eine sorgf{\"a}ltige Optimierung der Prozessierungsbedingungen ein Transfer der in L{\"o}sung gefundenen, supramolekularen Strukturen in den Blend l{\"o}sungsprozessierter BHJ-Solarzellen erreicht werden. Die organischen Elektronikbauteile wurden dabei im Arbeitskreis von Prof. Dr. Klaus Meerholz (Universit{\"a}t K{\"o}ln) gefertigt und charakterisiert. Zusammenfassend zeichnet die vorliegende Arbeit ein umfassendes Bild von der Synthese funktionaler Merocyanine, dem Studium ihrer molekularen und Selbstorganisationseigenschaften sowie ihrer Anwendung als p-Halbleitermaterialien in organischen Solarzellen. Der komplexe Molek{\"u}laufbau der dargestellten Farbstoffe f{\"u}hrte dabei zur Ausbildung verschiedener Farbstofforganisate, deren Struktur sowohl in L{\"o}sung als auch teilweise im Festk{\"o}rper aufgekl{\"a}rt werden konnte. Die erfolgreiche Implementierung von H-aggregierten Spezies der Verbindung 67b in die aktive Schicht organischer BHJ-Solarzellen resultierte in der Bildung effizienter Perkolationspfade f{\"u}r Exzitonen und freie Ladungstr{\"a}ger, wodurch diese Bauteile merklich h{\"o}here Stromdichten generieren konnten und gegen{\"u}ber Zellen ohne H-Spezies {\"u}ber 20 \% gesteigerte Effizienz aufwiesen. Diese Befunde verifizieren die postulierte Hypothese, dass eine gezielte Einstellung der zwischenmolekularen Wechselwirkungen bei organischen Halbleitern zu einer Optimierung der Funktionalit{\"a}t organischer Elektronikmaterialien beitragen kann.}, subject = {Merocyanine}, language = {de} }