@phdthesis{Bettaga2014, author = {Bettaga, Noomen}, title = {Bedeutung der NO-sensitiven Guanylyl Cyclase bei der Angiogenese und der Arteriogenese in der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111284}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Stickstoffmonoxid (NO) spielt eine wichtige Rolle bei Gef{\"a}ßremodelling-Prozessen wie Angiogenese und Arteriogenese. Die NO-Synthese im Gef{\"a}ßsystem wird haupts{\"a}chlich durch die endotheliale NO-Synthase (eNOS) gew{\"a}hrleistet. Sie kann durch verschiedene Faktoren wie Scherkr{\"a}fte und Zytokine wie der vaskul{\"a}re endotheliale Wachstumsfaktor (VEGF) reguliert werden. VEGF ist ein wichtiger Stimulator der Angiogenese und wird w{\"a}hrend dieses Prozesses hochreguliert. Die meisten physiologischen Effekte von NO werden durch die NO-sensitive Guanylyl-Cyclase (NO-GC) vermittelt. Als Hauptrezeptor f{\"u}r NO produziert die NO-GC den sekund{\"a}ren Botenstoff cyklisches Guanosinmonophosphat (cGMP) und f{\"u}hrt dadurch zur Stimulation der verschiedenen Effektoren wie z.B. der PKG. Ob die Wirkung von NO in Angiogenese und Arteriogenese ebenfalls durch NO-GC vermittelt wird, war bis zum Beginn dieser Arbeit noch unklar. Die NO-GC besteht aus zwei Untereinheiten (α und ß). Die Deletion der ß1-Untereinheit in M{\"a}usen resultiert in einer vollst{\"a}ndigen Knockout Maus (GCKO). Mithilfe des Cre-LoxP-Systems wurden zus{\"a}tzlich zellspezifische Knockout-M{\"a}use f{\"u}r glatte Muskelzellen (SMC-GCKO) und Endothelzellen (EC-GCKO) generiert. Um die Rolle der NO-GC in der Angiogenese und Arteriogenese zu untersuchen, wurden drei gut etablierte Methoden benutzt. Im ersten Teil des Projekts sollte die Expression der NO-GC in Endothelzellen untersucht werden. Zu diesem Zweck wurde die reverse Transkriptase-Polymerase-Kettenreaktion (RT-PCR) benutzt. Die Ergebnisse zeigen, dass die NO-GC in Endothelzellen der Lunge nur {\"a}ußerst gering wenig exprimiert ist. Durch den Aortenring-Assay wurde eine Rolle der NO-GC bei der VEGF-vermittelten Angiogenese festgestellt. Dabei zeigte sich eine st{\"a}rkere Angiogeneserate bei globaler Abwesenheit der NO-GC. Bei Fehlen der NO-GC ausschließlich in Endothelzellen zeigte sich kein Unterschied in den aussprossenden Aorten im Vergleich zu den Kontroll-Tieren. Dies zeigt, dass die NO-GC in Endothelzellen sehr wahrscheinlich keine Rolle bei der VEGF-vermittelten Angiogenese spielt. Im zweiten Teil wurde die Rolle der NO-GC bei der Angiogenese in einem in vivo-Modell untersucht. In dem Modell der Sauerstoff-induzierten-Retinopathie zeigten die GCKO-M{\"a}use eine verringerte Vaso-Obliteration, eine verlangsamte Angiogenese und eine erh{\"o}hte Tuft-Bildung. {\"A}hnliche Ergebnisse wurden bei den SMC-GCKO-Tieren beobachtet. EC-GCKO-M{\"a}use zeigten eine gegen{\"u}ber den Kontroll-Tieren unver{\"a}nderte Vaso-Obliteration, Angiogeneserate und Tuft-Bildung. Diese Ergebnisse lassen darauf schließen, dass die NO-GC in Endothelzellen keine Rolle spielt. Immunfluoreszenz-Aufnahmen zeigten die Expression von NO-GC in Perizyten der Gef{\"a}ßkapillaren der Mausretina. Daher k{\"o}nnte die NO-GC in diesem Zelltyp letztendlich f{\"u}r die Effekte bei den GCKO- und SMC-GCKO-Tieren verantwortlich sein. Im letzten Teil dieser Arbeit wurde eine Versuchsreihe unter Anwendung des Hinterlauf-Isch{\"a}mie-Modells durchgef{\"u}hrt. Hierbei entwickelten die Pfoten aller GCKO- und teilweise der SMC-GCKO-Tiere nach der Ligation der Femoralarterie eine Nekrose. Die Regeneration der Hinterl{\"a}ufe der EC-GCKO-Tiere nach der Operation verlief normal. Diese Ergebnisse schließen eine bedeutende Rolle der NO-GC in Endothelzellen aus, zeigen allerdings, dass die NO-GC in den glatten Muskelzellen essentiell f{\"u}r den Arteriogenese-Prozess ist. Zusammengefasst f{\"u}hrt die Deletion der NO-GC in glatten Muskelzellen und wahrscheinlich auch in Perizyten zur einer verlangsamten Angiogenese und Inhibierung der Arteriogenese.}, subject = {Guanylylcyclase}, language = {de} } @phdthesis{Karlisch2013, author = {Karlisch, Kaja}, title = {Die Rolle der PDE3 im cGMP/cAMP-Crosstalk in NO-GC-defizienten M{\"a}usen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98857}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die NO-sensitive Guanylyl-Cyclase (NO-GC) ist der wichtigste Rezeptor f{\"u}r das freigesetzte Signalmolek{\"u}l NO und katalysiert die Bildung des second Messenger cGMP. Die NO/cGMP Signalkaskade ist im kardiovaskul{\"a}ren System essentiell f{\"u}r die Hemmung der Thrombozytenaggregation und des Tonus der glatten Gef{\"a}ßmuskulatur und tr{\"a}gt damit zur Regulation des Blutdrucks bei. In der Arbeitsgruppe wurden Mauslinien generiert, bei denen die NO-GC ubiquit{\"a}r (GCKO) oder spezifisch in glatten Muskelzellen (SM-GCKO) ausgeschaltet ist. Beide Mausst{\"a}mme zeigen eine arterielle Hypertonie mit einem Anstieg des systolischen Blutdrucks um 30 mmHg im Vergleich zu den jeweiligen Kontrolltieren. Neben cGMP ist auch cAMP als weiterer second messenger in einer Reihe von Regulationsprozessen im kardiovaskul{\"a}ren System involviert. Die Intensit{\"a}t und Dauer eines cAMP-Signals wird zum einen durch seine Synthese durch die Adenylyl-Cyclasen, zum anderen durch seine Hydrolyse durch die Phosphodiesterasen (PDE) bestimmt. Dabei spielt die PDE3 als cGMP-inhibierte, cAMP-abbauende PDE eine wichtige Rolle im sogenannten cGMP/cAMP-Crosstalk. Ein wichtiges Instrument zur Untersuchung PDE3-abh{\"a}ngiger Prozesse ist der spezifische Hemmstoff Milrinon. Innerhalb dieser Arbeit konnte gezeigt werden, dass die PDE3-Expression abh{\"a}ngig ist von der Expression des cGMP-produzierenden Enzyms NO-GC: So zeigte sich in Thrombozyten wie auch in glatten Gef{\"a}ßmuskelzellen nach Deletion der NO-GC im Vergleich zu den Kontrolltieren eine Reduktion der PDE3 um die H{\"a}lfte. Diese Reduktion der PDE3-Expression war sowohl in den glatten Muskelzellen von GCKO wie auch von SM-GCKO-M{\"a}usen zu finden. Weiterhin konnte dargestellt werden, dass die Down-Regulation der PDE3 in glatter Gef{\"a}ßmuskulatur in SM-GCKO-M{\"a}usen parallel zur Reduktion der NO-GC und nicht parallel zum daraus resultierenden Anstieg des Blutdrucks verl{\"a}uft. Die Reduktion der PDE3-Expression ging mit einer Verminderung der Aktivit{\"a}t in den Thrombozyten und glatten Muskelzellen des GCKOs einher. In Herzmuskelgewebe dagegen {\"a}nderten sich Expression und Aktivit{\"a}t der PDE3 nicht. Der spezifische PDE3-Hemmstoff Milrinon f{\"u}hrte zu einem weiteren Anstieg des systolischen Blutdrucks in den KO-Linien, nicht aber in Kontrolltieren. Zusammenfassend spielt die PDE3 eine wichtige Rolle im cGMP/cAMP-Crosstalk sowohl in Thrombozyten als auch in glatten Gef{\"a}ßmuskelzellen von M{\"a}usen.}, subject = {cGMP}, language = {de} }