@phdthesis{Glaser2008, author = {Glaser, Stefanie}, title = {Untersuchung des RNA-Kernexportes im Modellsystem Xenopus laevis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37474}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Der eukaryotische Initiationsfaktor 5A (eIF5A) ist evolution{\"a}r hoch konserviert und besitzt als einzig bislang bekanntes Protein die Aminos{\"a}uremodifikation Hypusin. Obwohl eIF5A ubiquit{\"a}r exprimiert wird, sind die zellul{\"a}ren Funktionen von eIF5A noch weitgehend unklar. Hypusininhibitoren konnten die Oberfl{\"a}chenexpression von CD83 die CD83 mRNA im Zellkern dendritischer Zellen anreichern und folglich die Oberfl{\"a}chenexpression von CD83 verhindern konnten, wurde eine Beteiligung von eIF5A beim nukleozytoplasmatischen Export der CD83 mRNA vermutet. Weiterhin ist bekannt, dass HuR, ein Protein der ELAV-Familie, an ein cis-aktives RNA-Element mit einer ausgepr{\"a}gten Sekund{\"a}rstruktur innerhalb der kodierenden Sequenz der CD83 mRNA bindet. W{\"a}hrend die Bindung von HuR an AU-reiche Elemente in der 3UTR bestimmter Transkripte zu deren Stabilisierung f{\"u}hrt, wird die Stabilit{\"a}t von CD83-Transkripten durch die Interaktion mit HuR jedoch nicht beeinflusst. In dieser Arbeit wurden Mikroinjektionsstudien in Xenopus laevis-Oozyten zum nukleozytoplasmatischen Export von CD83 mRNA durchgef{\"u}hrt. Es konnte gezeigt werden, dass die charakteristische Sekund{\"a}rstruktur des HuR-Response-Elements essentiell f{\"u}r den Kernexport von CD83-Transkripten ist. HuR wurde zudem als Bindungspartner von eIF5a identifiziert. Inhibitorische Antik{\"o}rper sowohl gegen HuR als auch eIF5A waren in der Lage, den Export von CD83-Transkripten zu inhibieren. W{\"a}hrend die meisten mRNAs durch den TAP/NXT1-vermittelten Exportweg in das Zytoplasma transportiert werden, transloziert CD83 mRNA CRM1-vermittelt, da der Export durch den CRM1-Inhibitor Leptomycin B gehemmt werden konnte. Oozytentypischer TFIIIA, ebenfalls ein Interaktionspartner von eIF5A, ist in jungen Xenopus-Oozyten sowohl bei der RNA-Polymerase III-abh{\"a}ngigen Transkription von 5S rRNA als auch am nukleozytoplasmatischem Export und der Lagerung von 5S rRNA im Zytoplasma beteiligt. Aufgrund der Parallele zwischen dem HIV-1-Rev vermittelten HIV-1-mRNA-Export und dem TFIIIA-vermittelten 5S rRNA-Export, wurde der Export von TFIIIA im Hinblick auf eine Beteiligung von eIF5A als Kofaktor analysiert. In Xenopus-Oozyten wurde TFIIIA an den nukleoplasmatischen Filamenten der Kernporenkomplexe detektiert. Weiterhin konnte durch den Einsatz des spezifischen CRM1-Inhibitors Leptomycin B best{\"a}tigt werden, dass TFIIIA, welches ein leucinreiches Kernexportsignal enth{\"a}lt, mittels CRM1 exportiert wird. Im Overlay-Blot-Assay konnte gezeigt werden, dass eIF5A mit TFIIIA interagiert. Außerdem deuten Mikroinjektionsexperimente darauf hin, dass eIF5A, wie beim HIV-1-Rev-vermittelten Export, auch beim TFIIIA-Export als essentieller Kofaktor involviert ist. Ein weiterer bekannter Bindungspartner von eIF5A ist Aktin, das im Zellkern an verschiedenen Exportprozessen sowie der RNA-Polymerase I-, II- und III-abh{\"a}ngigen Transkription beteiligt ist. Im Gegensatz zu Aktin wurde die Existenz des Aktinpartners Myosin im Zellkern erst vor kurzem realisiert. In dieser Arbeit konnten durch bioinformatische Analysen gezeigt werden, dass Kernmyosin IC bei Vertebraten weit verbreitet ist. Es wurde auch bei Xenopus laevis identifiziert. Im Vergleich zu Myosin IC fand sich ein zus{\"a}tzlicher Aminoterminus aus 16 Aminos{\"a}uren, welcher als Kernlokalisationssignal fungiert. In Oozyten von Xenopus laevis konnte Kernmyosin IC, {\"a}hnlich wie RNA-Polymerase II, an den lateralen Schleifen der Lampenb{\"u}rstenchromosomen dargestellt werden. Inhibierende Kernmyosinantik{\"o}rper f{\"u}hrten nach Mikroinjektion in den Zellkern von Xenopus-Oozyten zu einer kompletten Retraktion der meisten lateralen transkriptionsaktiven Schleifen sowie zu einer Verk{\"u}rzung der Chromosomenachsen. konnte Kernmyosin IC vor allem im Nukleoluskern detektiert werden, wo es partiell mit RNA-Polymerase I und Fibrillarin kolokalisierte. In amplifizierten Nukleolen f{\"u}hrte eine Transkriptionsinhibition mit Aktinomycin D zu einer Umverteilung des Kernmyosin IC zusammen mit der RNA-Polymerase I und der rDNA. Nach Injektion inhibierender Kernmyosinantik{\"o}rper kam es zu einem massiven architektonischen Umbau der Nukleolen. Im Gegensatz zu den Nukleolen von somatischen Xenopus-Zellen war ein BrUTP-Einbau in amplifizierte Nukleolen jedoch noch m{\"o}glich. Wie f{\"u}r Kernaktin bereits beschrieben, konnte auch Kernmyosin IC an den nukleoplasmatischen Filamenten der Kernporenkomplexe von Xenopus laevis-Ooyzten dargestellt werden. Da Aktin als essentieller Kofaktor an Exportprozessen beteiligt ist, sollte in Mikroinjektionsexperimenten auch eine Beteiligung von Kernmyosin IC beim Kernexport {\"u}berpr{\"u}ft werden. Antik{\"o}rper gegen ein Epitop in der Myosinkopfdom{\"a}ne des Kernmyosin IC (XNMIC \#42) waren im Gegensatz zu Antik{\"o}rpern, die den charakteristischen Aminoterminus aus 16 Aminos{\"a}uren erkennen (XNMIC \#54), in der Lage, einen CRM1-vermittelten Proteinexport zu inhibieren.}, subject = {RNS}, language = {de} } @phdthesis{Ivanov2005, author = {Ivanov, Konstantin}, title = {Charakterisierung der Helikase- und Endonukleaseaktivit{\"a}ten des Humanen Coronavirus 229E und des SARS-Coronavirus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Humane Coronaviren sind wichtige Pathogene, die vor allem mit respiratorischen (z.B. SARS) und enteralen Erkrankungen assoziiert sind. Coronaviren besitzen das gr{\"o}ßte gegenw{\"a}rtig bekannte RNA-Genom aller Viren (ca. 30 Kilobasen). Die Replikation des Genoms und die Synthese zahlreicher subgenomischer RNAs, die die viralen Strukturproteine und einige akzessorische, vermutlich virulenzassoziierte, Proteine kodieren, erfolgt durch die virale Replikase. Die coronavirale Replikase ist ein Multienzym-Komplex, der durch die proteolytische Prozessierung großer Vorl{\"a}uferproteine (Polyproteine pp1a und pp1ab) entsteht und 16 virale Nichtstrukturproteine (nsp), aber auch einige zellul{\"a}re Proteine, beinhaltet. Obwohl die Charakterisierung der Funktionen der einzelnen Proteine und das Verst{\"a}ndnis der molekularen Grundlagen der coronaviralen Replikation noch in ihren Anf{\"a}ngen stecken, ist bereits jetzt klar, dass die an der Replikation beteiligten Mechanismen deutlich komplexer sind als bei den meisten anderen RNA-Viren. Man hofft, dass aus der Untersuchung der einzelnen an der Replikation beteiligten Proteine Erkenntnisse zu den Besonderheiten des Lebenszyklus dieser ungew{\"o}hnlich großen RNA-Viren abgeleitet werden k{\"o}nnen und dass sich daraus auch Ansatzpunkte f{\"u}r die Entwicklung von Inhibitoren einzelner Proteine/Enzyme ergeben, die f{\"u}r eine zuk{\"u}nftige antivirale Therapie genutzt werden k{\"o}nnten. In der vorliegenden Arbeit wurden zwei enzymatische Aktivit{\"a}ten von Coronaviren, eine Helikase und eine Endonuklease, die Teil der coronaviralen Nichtstrukturproteine nsp13 bzw. nsp15 sind, in vitro untersucht. Zur Etablierung allgemeing{\"u}ltiger Prinzipien coronaviraler Enzymaktivit{\"a}ten wurden die homologen Proteine von HCoV-229E und SARS-CoV, also von Vertretern unterschiedlicher serologischer und genetischer Coronavirus-Gruppen, parallel untersucht und ihre Eigenschaften miteinander verglichen. Die nsp13-Helikase des SARSCoronavirus wurde als bakterielles Fusionsprotein exprimiert, und die nsp13-Helikase des humanen Coronavirus 229E wurde in Insektenzellen mittels baculoviraler Vektoren exprimiert. Beide Proteine zeigten Polynukleotid-stimulierbare NTPase- und 5'-3'-Helikase-Aktivit{\"a}ten. Dar{\"u}ber hinaus besaßen sie vergleichbare Hydrolyseaktivit{\"a}ten gegen{\"u}ber den 8 getesteten Ribound Desoxyribonukleosidtriphosphaten. Die Anwesenheit von poly(U) f{\"u}hrte zu einer 3-fachen Erh{\"o}hung der katalytischen Effizienz (kcat/Km) und einer etwa 100-fachen Steigerung der Hydrolysegeschwindigkeit (kcat). Es wurde am Beispiel von HCoV-229E-nsp13 gezeigt, dass Nukleins{\"a}uresubstrate mit hoher Affinit{\"a}t (K50 \&\#8776; 10-8 M), jedoch ohne erkennbare Pr{\"a}ferenz f{\"u}r einzel- oder doppelstr{\"a}ngige DNA- oder RNA-Substrate gebunden werden. Solch eine feste Bindung ist typisch f{\"u}r Enzyme, die prozessiv mit Nukleins{\"a}uren interagieren. Sie korreliert dar{\"u}ber hinaus mit der beobachteten effizienten Entwindung (Trennung) von RNA- und DNADuplexen mit langen, doppelstr{\"a}ngigen Bereichen von 500 Basenpaaren und mehr. Dies legt eine Funktion als replikative Helikase nahe, wie sie beispielweise bei der effektiven Entwindung doppelstr{\"a}ngiger replikativer Intermediate ben{\"o}tigt werden k{\"o}nnte. In dieser Arbeit wurde dar{\"u}ber hinaus eine neue enzymatische Aktivit{\"a}t coronaviraler Helikasen entdeckt. Die gefundene RNA-5'-Triphosphatase-Aktivit{\"a}t nutzt das aktive Zentrum der NTPase-Aktivit{\"a}t und katalysiert wahrscheinlich die erste Reaktion innerhalb der Synthese der Cap-Struktur am 5'- Ende viraler RNAs. Die sehr {\"a}hnlichen biochemischen Eigenschaften der HCoV-229E- und SARS-CoV-Helikasen lassen vermuten, dass die Enzymologie der viralen RNA-Synthese (trotz relativ geringer Sequenzidentit{\"a}t der beteiligten Enzyme) unter den Vertretern unterschiedlicher Gruppen von Coronaviren konserviert ist. Der zweite Teil der Arbeit besch{\"a}ftigte sich mit der biochemischen Charakterisierung des Nichtstrukturproteins nsp15, f{\"u}r das eine Endonuklease-Aktivit{\"a}t vorhergesagt worden war. Auch in diesem Fall wurden die entsprechenden Proteine von HCoV-229E und SARS-CoV charakterisiert. Beide (bakteriell exprimierten) Enzyme zeigten identische enzymatische Eigenschaften. In-vitro-Experimente best{\"a}tigten, dass diese Proteine eine Mn2+-abh{\"a}ngige RNA- (jedoch nicht DNA-) Endonukleaseaktivit{\"a}t besitzen. Sie spalten doppelstr{\"a}ngige RNA deutlich effektiver und spezifischer als einzelstr{\"a}ngige RNA. Die Enzyme spalten an Uridylat-Resten und erzeugen Produkte mit 2', 3'-Zyklophosphat-Enden. Bei doppelstr{\"a}ngigen RNA-Substraten wurde eine Spezifit{\"a}t f{\"u}r 5'-GU(U)-3' gefunden. Die Tatsache, dass diese Sequenz in den nidoviralen transkriptionsregulierenden Sequenzen (TRS) der Minusstr{\"a}nge konserviert ist und auch die Endonuklease bei allen Nidoviren konserviert ist, unterst{\"u}tzt die Hypothese, dass die Endonukleaseaktivit{\"a}t eine spezifische Funktion innerhalb der coronaviralen (nidoviralen) diskontinuierlichen Transkription besitzt.}, subject = {Coronaviren}, language = {de} } @phdthesis{Hofmann2002, author = {Hofmann, Wilma}, title = {Die Rolle von eIF-5A und Kernaktin bei Kernexportprozessen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die retrovirale Replikation in der eukaryotischen Zelle erfordert den Export Intron-enthaltender Transkripte aus dem Kern ins Cytoplasma. Bei HIV-1 wird dieser nucleocytoplasmatische Transport durch den viralen Transaktivator Rev vermittelt. Rev ist ein Shuttle-Protein, das sowohl ein Kernimportsignal (NLS) als auch ein Leucin-reiches Kernexportsignal (NES) besitzt. Nach der Bindung von Rev an eine spezifische RNA Sekund{\"a}rstruktur, das sogenannte Rev Response Element (RRE) interagieren zellul{\"a}re Faktoren mit dem NES von Rev, wodurch der Kernexport vermittelt wird. Neben dem generellen Exportrezeptor CRM1 konnte auch der eukaryotische Initiationsfaktore 5A (eIF-5A) als ein Bindungspartner von Rev identifiziert werden. In dieser Arbeit konnte nun gezeigt werden, daß eIF-5A ein essentieller Faktor f{\"u}r den Rev-vermittelten RNA Export ist. Mikroinjektionen von eIF-5A-Antik{\"o}rpern und der eIF-5A-M14 Mutante in Kerne von Xenopus Oocyten, sowie Bindungsstudien in L{\"o}sung haben gezeigt, daß eIF-5A als ein Adapterprotein fungiert, das upstream des generellen Exportrezeptors CRM1 wirkt. eIF-5A bindet dabei an das Rev-NES und vermittelt dadurch eine effiziente Bindung dieses NES an CRM1, wodurch der effiziente Export des Rev/RNA-Komplexes stattfinden kann. Da die zellul{\"a}re Funktion von eIF-5A noch unbekannt war, wurden Overlay Blot Assays auf Xenopus Oocytenkernh{\"u}llen durchgef{\"u}hrt, um Kernproteine zu finden, die mit eIF-5A interagieren. Dies f{\"u}hrte zur Identifikation des Transkriptionsfaktors IIIA als einen Bindungspartner von eIF-5A. TFIIIA ist ein Exportfaktor f{\"u}r die Oocyten-Typ 5S rRNA in Amphibien Oocyten und besitzt wie Rev ein Leucin-reiches NES. Aufgrund einer Analyse dieses RNA Exportweges konnte nun gezeigt werden, daß eIF-5A auch in diesem spezifischen Exportweg als Adapter wirkt, der das NES des TFIIIA mit dem Exportrezeptor CRM1 verbindet und dadurch den Export des TFIIIA/5S rRNA-Komplexes vermittelt. Eine weitere zellul{\"a}re Funktion von eIF-5A konnte beim Export der CD83 mRNA in Dendritischen Zellen gefunden werden. Es konnte gezeigt werden, daß der Export der CD83 mRNA durch das RNA-bindende Protein HuR und durch den generellen Exportrezeptor CRM1 vermittelt wird. Durch den HuR Lignaden APRIL, der ein Rev-{\"a}hnliches, Leucin-reiches NES besitzt, wird dabei die Bindung an CRM1 vermittelt. Des weiteren konnte gezeigt werden, daß eIF-5A an diesem RNA Export beteiligt ist. Wie auch beim Rev-vermittelten RRE RNA Export und dem TFIIIA-vermittelten 5S rRNA Export wirkt eIF-5A als ein Adapter, der das NES des HuR-Liganden APRIL mit CRM1 verbindet, wodurch der Export des CD83 mRNA/HuR/APRIL Komplexes stattfinden kann. Neben TFIIIA und verschiedenen Nucleoporinen, konnte Kernaktin als ein weiterer Bindungspartner von eIF-5A identifiziert werden. In dieser Arbeit durchgef{\"u}hrte Mikroinjektionsexperimente mit Antik{\"o}rpern gegen Aktin sowie verschiedenen Aktin-bindende Drogen konnten zeigen, daß Kernaktin scheinbar generell in Exportprozesse involviert ist. Mit Hilfe verschiedener Aktin-bindender Proteine (Latrunculin B und Swinholide A) konnte gezeigt werden, daß eine l{\"o}sliche oder oligomere Form, nicht jedoch Aktinfilamente, funktionell an Kernexportprozessen beteiligt sind. Durch die Analyse Kernaktin-bindender Proteine konnten bereits die beiden Nucleoporine CAN/Nup214 und p62, die beide an Exportprozessen beteiligt sind, als Bindungspartner identifiziert werden. Außerdem ergaben sich h{\"o}chst interessante Hinweise auf die Beteiligung eines, bis jetzt noch nicht identifizierten, Kernproteins auf eine Beteiligung am Aktin-vermittelten Kernexport.}, subject = {Kernh{\"u}lle}, language = {de} }