@phdthesis{Friedrich2015, author = {Friedrich, Alexandra}, title = {Beeinflussung des Na+-D-Glukose-Kotransporters SGLT1 und der Na+-Nukleosidtransporter CNT durch Peptidmotive des Regulatorproteins RS1 im Darm}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Der Natrium-D-Glukose Kotransporter 1 (SGLT1) spielt eine wichtige Rolle bei der Aufnahme von Glukose aus dem Darmlumen in die Enterozyten des Darms. Anhand von Untersuchungen an Xenopus laevis-Oozyten konnte in unserem Labor das Protein RS1 als posttranslationales Regulatorprotein f{\"u}r SGLT1 und diverse andere Transporter ermittelt werden. Es wurde eine regulatorische Dom{\"a}ne aus RS1 mit vielen potentiellen Phosphorylierungsstellen isoliert (RS1-Reg) und gezeigt dass RS1-Reg die Abschn{\"u}rung von Transporter enthaltenen Vesikeln vom Transgolgi-Netzwerk hemmt. Neben SGLT1 reguliert RS1 auch die konzentrierenden Nukleosidtransporter (CNTs) am TGN. Die Regulation der Transporter ist vom Phosphorylierungszustand von RS1-Reg abh{\"a}ngig. So wurde durch Versuche an Oozyten von Xenopus laevis und Injektion von RS1-Reg Mutanten gezeigt, dass die Phosphorylierung von RS1-Reg an einigen Stellen zu einer Inhibition von SGLT1 f{\"u}hrte, w{\"a}hrend der Nukleosidtransporter CNT1 durch die dephosphorylierte Mutante herunterreguliert wurden. Neben der phosphorylierungsabh{\"a}ngigen Regulation konnte f{\"u}r SGLT1 auch gezeigt werden, dass die Herunterregulation nur unter Niedrigzucker-Bedingungen erfolgte, nicht jedoch bei hohen Glukosekonzentrationen. F{\"u}r die CNTs war eine derartige Zuckerabh{\"a}ngigkeit nicht zu beobachten. Im Rahmen der vorliegenden Studie wurde untersucht, ob die Ergebnisse aus den Oozytenmessungen auch in vivo in einem S{\"a}ugetier gezeigt werden k{\"o}nnen. Hierzu wurden Mutanten der regulatorischen Dom{\"a}ne (RS1-Reg) des Maus-Proteins, welche den phosphorylierten Zustand simulierten (RS1-Reg (S19E)), oder die Phosphorylierung verhinderten (RS1-Reg (S19A)) eingesetzt. Diese wurden an ein Nanohydrogel gekoppelt, um eine Aufnahme in die Enterozyten im Darm zu gew{\"a}hrleisten. Es wurde in der RS1KO-Mausohne funktionelles RS1 gezeigt, dass auch im in vivo-System eine Herunterregulation von SGLT1 durch mRS1-Reg (S19E), nicht jedoch durch mRS1-Reg (S19A) erfolgte, w{\"a}hrend die CNTs nur durch mRS1-Reg (S19A) inhibiert wurden. Des Weiteren f{\"u}hrte mRS1-Reg (S19A) in der Wildtypmaus bei niedrigen Zuckerkonzentrationen zu einer Stimulation von SGLT1, was f{\"u}r eine Kompetition mit dem endogenen RS1-Proteins spricht. Es konnte indirekt der Beweis erbracht werden, dass {\"u}ber Nanohydrogele l{\"a}ngere Proteine in die Zelle gebracht werden k{\"o}nnen und dort funktionell freigesetzt werden.}, subject = {Glucosetransport}, language = {de} } @phdthesis{Osswald2003, author = {Oßwald, Christina}, title = {Fettsucht mit erh{\"o}hter D-Glukose-Absorption im D{\"u}nndarm durch Inaktivierung des Regulatorproteins RS1 bei M{\"a}usen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {RS1 ist ein 67-68 kD großes, ubiquit{\"a}r exprimiertes Protein, das sich an der Innenseite der Plasmamembran befindet und in den Zellkern wandern kann. Durch immunhistochemischen Untersuchungen an D{\"u}nndarmschnitten der Maus konnte RS1 das erste Mal in dieser Arbeit im Kern und an der Membran von Enterozyten gezeigt werden. RS1 wird von einem intronlosen Single Copy Gen kodiert und ist f{\"a}hig Ubiquitin {\"u}ber eine Ubiquitin-assoziierte (UBA) Dom{\"a}ne zu binden. Es reduziert die Konzentration einiger Proteine in der Plasmamembran. Durch Expressionsversuche in Xenopus Oozyten wurde gezeigt, dass RS1 die Menge des Na+-D-Glukosekotransporters SGLT1 in der Plasmamembran transkriptionsunabh{\"a}ngig reduziert. Entsprechend seiner dualen Lokalisation beteiligt sich RS1 aber auch an der Transkriptionsregulation im Zellkern. In der vorliegenden Arbeit konnten Informationen {\"u}ber die physiologische Funktion des membranassoziierten Regulatorproteins RS1 gewonnen werden. Nach Erstellung einer RS1-knock-out Maus wurde sichergestellt, dass ein erfolgreiches Rekombinationsereignis stattgefunden hatte und RS1 tats{\"a}chlich nicht mehr exprimiert wurde. Die RS1-knock-out M{\"a}use waren postnatal lebensf{\"a}hig, vermehrten sich gut und entwickelten eine Fettsucht mit 30 \% mehr K{\"o}rpergewicht, 80 \% mehr Fett und um 40 \% vergr{\"o}ßerten Fettzellen. Bei den transgenen M{\"a}usen war weder die Nahrungsaufnahme gesteigert, noch die motorische Aktivit{\"a}t verringert. In der B{\"u}rstensaummembran des D{\"u}nndarmepithels konnte bei den RS1-knock-out M{\"a}usen die siebenfache Menge an Protein des Na+-abh{\"a}ngigen D-Glukosekotransporters SGLT1 detektiert werden, w{\"a}hrend die Konzentration des passiven Glukosetransporters GLUT2 in der basolateralen Membran nicht ver{\"a}ndert war. Die Zunahme der SGLT1-Proteinmenge war posttranskriptional bedingt. Bei der RS1-knock-out Maus wirkt sich der in Oozyten beobachtete Effekt an der Plasmamembran aus, w{\"a}hrend der an konfluenten LLCPK1 Zellen gezeigte Effekt im Zellkern nicht zum Tragen kommt. Die transgenen Tiere resorbierten die doppelte Menge an D-Glukose im D{\"u}nndarm. Das spricht daf{\"u}r, dass bei der RS1-knock-out Maus der „turnover" des SGLT1 beeinflusst sein muss, da die siebenfache SGLT1-Proteinmenge einem verdoppelten Transport {\"u}ber den SGLT1 gegen{\"u}bersteht. Die RS1-knock-out M{\"a}use zeigten normale Insulinspiegel und regul{\"a}re oralen Glukosebelastungstests. Bei gef{\"u}tterten M{\"a}usen waren die Serumleptinspiegel {\"a}hnlich wie bei Wildtypm{\"a}usen, die typische Reduzierung des Serumleptinspiegel konnte bei den M{\"a}usen ohne RS1 aber nicht beobachtet werden. Untersuchungen an Fettzellexplantaten ergaben, dass die Sekretion von Leptin bei RS1- knock-out-Explantaten erh{\"o}ht war, w{\"a}hrend die Leptinsynthese und die insulinabh{\"a}ngige Regulation der Leptinsekretion nicht ver{\"a}ndert waren. Mit der RS1-knock-out Maus wurde ein neues Fettsuchtmodell geschaffen. RS1 spielt eine physiologisch wichtige Rolle bei der Regulation der D-Glukoseaufnahme im Darm. Der visceralen Adipositas liegt wahrscheinlich eine gesteigerte Nahrungsutilisation durch die verbesserte Glukoseaufnahme {\"u}ber den SGLT1 im Darm zugrunde. Die gesteigerte Glukoseabsorption ist urs{\"a}chlich f{\"u}r den Anstieg der Fettmasse. Die Fettzellen vergr{\"o}ßern sich und sezernieren dann mehr Leptin. Es ist davon auszugehen, dass die RS1-knock-out M{\"a}use eine ver{\"a}nderte Nahrungsutilisation aufgrund der verbesserten Glukoseaufnahme im D{\"u}nndarm aufweisen. Die Adipositas demzufolge ein sekund{\"a}rer Effekt. Gleichzeitig kann aber nicht ausgeschlossen werden, dass RS1 direkt auf die Zellen des weißen Fettgewebes wirkt und bei Wildtypm{\"a}usen die Sekretion des Leptins aus Vesikeln hemmt.}, subject = {Fettsucht}, language = {de} } @phdthesis{Kuehlkamp2001, author = {K{\"u}hlkamp, Thomas}, title = {Der plasmamembran assoziierte Transportregulator RS1 bindet Ubiquitin und gelangt in den Zellkern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179507}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Die vorliegende Arbeit liefert wichtige Erkenntnisse {\"u}ber die subzellul{\"a}re Verteilung und die Funktion des RS1-Proteins vom Schwein (pRS1), einem Regulator von Plasmamembran-transportern. Das gr{\"u}n fluoreszierende Protein (GFP) wurde mit pRS1 fusioniert und in LLC-PK1 Zellen exprimiert. Das GFP-pRS1 Fusionsprodukt (96 kD) konnte an der Plasmamembran, im Zytosol und im Zellkern entdeckt werden. Bei GFP-Fusion mit trunkierten pRS1-Proteinen zeigte sich, dass der C-Terminus die Kernlokalisierung beeinflusst. Dagegen wurde die Kernlokalisierung durch eine Trunkierung des N-Terminus nicht gest{\"o}rt. Im C-Terminus des pRS1 konnte von AS 579 bis 616 eine Ubiquitin associated domain (UBA) identifiziert werden, die auch in den anderen bisher bekannten RS1-Proteinen aus Mensch, Kaninchen und Maus konserviert vorliegt. Eine Ubiquitin-Affinit{\"a}tschromatographie zeigte, dass das pRS1-Protein Ubiquitin auf nicht kovalente Weise bindet. Nach der Trunkierung der UBA-Dom{\"a}ne war keine Wechselwirkung des pRS1-Proteins mit Ubiquitin mehr feststellbar. Ein konserviertes Di-Leucin-Endozytose-Motiv (pRS1 AS 366/67) deutet eine Funktion des pRS1-Proteins bei der Internalisierung von Plasmamembranproteinen an. Deshalb wurde das Endozytoseverhalten von pRS1 {\"u}berexprimierenden LLC-PK1 Zellen untersucht, wobei sich zeigte, dass diese Zellen eine deutlich h{\"o}here Aufnahme des Endozytosefarbstoffes RH 414 aufwiesen als Zellen, die pRS1 nicht {\"u}berexprimierten. Die in dieser Arbeit gesammelten Daten zum RS1-Protein wurden zusammen mit fr{\"u}her erhobenen Ergebnissen zum RS1-Protein im Rahmen eines Modells zusammengefasst. In diesem hypothetischen Modell wird angenommen, dass RS1 ein Adapterprotein ist, welches die ubiquitinabh{\"a}ngige Endozytose von Plasmamembrantransportern vermittelt und als Signalmolek{\"u}l in den Zellkern gelangen kann, wo es an der Transcriptionsrepression des SGLT1 beteiligt ist.}, subject = {Ubiquitin}, language = {de} }