@phdthesis{Gruene2022, author = {Gr{\"u}ne, Jeannine}, title = {Spin States and Efficiency-Limiting Pathways in Optoelectronic Materials and Devices}, doi = {10.25972/OPUS-29340}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis addresses the identification and characterization of spin states in optoelectronic materials and devices using multiple spin-sensitive techniques. For this purpose, a systematic study focussing on triplet states as well as associated loss pathways and excited state kinetics was carried out. The research was based on comparing a range of donor:acceptor systems, reaching from organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) to organic photovoltaics (OPV) employing fullerene and multiple non-fullerene acceptors (NFAs). By developing new strategies, e.g., appropriate modeling, new magnetic resonance techniques and experimental frameworks, the influence of spin states in the fundamental processes of organic semiconductors has been investigated. Thereby, the combination of techniques based on the principle of electron paramagnetic resonance (EPR), in particular transient EPR (trEPR) and optically detected magnetic resonance (ODMR), with all-optical methods, such as transient electroluminescence (trEL) and transient absorption (TA), has been employed. As a result, excited spin states, especially molecular and charge transfer (CT) states, were investigated in terms of kinetic behavior and associated pathways, which revealed a significant impact of triplet states on efficiency-limiting processes in both optoelectronic applications.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Weissenseel2022, author = {Weißenseel, Sebastian G{\"u}nter}, title = {Spin-Spin Interactions and their Impact on Organic Light-Emitting Devices}, doi = {10.25972/OPUS-25745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work investigates the correlations between spin states and the light emission properties of organic light-emitting diodes (OLEDs), which are based on the principle of thermally activated delayed fluorescence. The spin-spin interactions responsible for this mechanism are investigated in this work using methods based on spin-sensitive electron paramagnetic resonance (EPR). In particular, this method has been applied to electrically driven OLEDs. The magnetic resonance has been detected by electroluminescence, giving this method its name: electroluminescence detected magnetic resonance (ELDMR). Initial investigations on a novel deep blue TADF emitter were performed. Furthermore, the ELDMR method was used in this work to directly detect the spin states in the OLED. These measurements were further underlined by time-resolved experiments such as transient electro- and photoluminescence.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Bunzmann2021, author = {Bunzmann, Nikolai Eberhard}, title = {Excited State Pathways in 3rd Generation Organic Light-Emitting Diodes}, doi = {10.25972/OPUS-22078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This work revealed spin states that are involved in the light generation of organic light-emitting diodes (OLEDs) that are based on thermally activated delayed fluorescence (TADF). First, several donor:acceptor-based TADF systems forming exciplex states were investigated. Afterwards, a TADF emitter that shows intramolecular charge transfer states but also forms exciplex states with a proper donor molecule was studied. The primary experimental technique was electron paramagnetic resonance (EPR), in particular the advanced methods electroluminescence detected magnetic resonance (ELDMR), photoluminescence detected magnetic resonance (PLDMR) and electrically detected magnetic resonance (EDMR). Additional information was gathered from time-resolved and continuous wave photoluminescence measurements.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Vaeth2016, author = {V{\"a}th, Stefan Kilian}, title = {On the Role of Spin States in Organic Semiconductor Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The present work addressed the influence of spins on fundamental processes in organic semiconductors. In most cases, the role of spins in the conversion of sun light into electricity was of particular interest. However, also the reversed process, an electric current creating luminescence, was investigated by means of spin sensitive measurements. In this work, many material systems were probed with a variety of innovative detection techniques based on electron paramagnetic resonance spectroscopy. More precisely, the observable could be customized which resulted in the experimental techniques photoluminescence detected magnetic resonance (PLDMR), electrically detected magnetic resonance (EDMR), and electroluminescence detected magnetic resonance (ELDMR). Besides the commonly used continuous wave EPR spectroscopy, this selection of measurement methods yielded an access to almost all intermediate steps occurring in organic semiconductors during the conversion of light into electricity and vice versa. Special attention was paid to the fact that all results were applicable to realistic working conditions of the investigated devices, i.e. room temperature application and realistic illumination conditions.}, subject = {Organischer Halbleiter}, language = {en} } @phdthesis{Sperlich2013, author = {Sperlich, Andreas}, title = {Electron Paramagnetic Resonance Spectroscopy of Conjugated Polymers and Fullerenes for Organic Photovoltaics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-81244}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In the presented thesis, the various excited states encountered in conjugated organic semiconductors are investigated with respect to their utilization in organic thin-film solar cells. Most of these states are spin-baring and can therefore be addressed by means of magnetic resonance spectroscopy. The primary singlet excitation (spin 0), as well as positive and negative polaronic charge carriers (spin 1/2) are discussed. Additionally, triplet excitons (spin 1) and charge transfer complexes are examined, focussing on their differing spin-spin interaction strength. For the investigation of these spin-baring states especially methods of electron paramagnetic resonance (EPR) are best suited. Therefore according experimental methods were implemented in the course of this work to study conjugated polymers, fullerenes and their blends with continuous wave as well as time-resolved EPR and optically detected magnetic resonance.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Kacprzak2006, author = {Kacprzak, Sylwia}, title = {Investigations of the EPR parameters of bioradicals by density functional methods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die quantenchemische Modellierung von Parametern der elektronenparamagnetischen Resonanz (EPR) stellt, in Kombination mit Daten aus modernen Hochfeld-/Hochfrequenz (HF) EPR-Techniken, eine {\"u}beraus wichtige analytische Methode dar, um Einblicke in die Radikal-Protein-Wechselwirkung zu gewinnen. Diese Wechselwirkung bestimmt zu einem großen Teil die Abl{\"a}ufe radikalischer biochemischer Prozesse. In dieser Arbeit untersuchten wir in einer Reihe von Dichtefunktionaltheorie (DFT)-Studien die EPR-Parameter diverser biologisch wichtiger Radikale sowie mehrerer durch Radikal-Protein-Wechselwirkungen im Photosystem I inspirierter Modellsysteme. Wir demonstrierten die Genauigkeit sowie die Kapazit{\"a}t unserer Methode, um Einblicke in die in vivo Umgebung und Reaktivit{\"a}t von Bioradikalen zu erhalten. Unser DFT-Ansatz zur Berechnung elektronischer g-Tensoren wurde auf Semichinonradikalanionen in verschiedenen Proteinumgebungen photosynthetischer Reaktionszentren angewandt. Supermolekulare Modelle wurden, basierend auf einer Kombination aus kristallographischen und quantenchemischen Strukturdaten, f{\"u}r die aktiven Zentren QA und QB bakterieller Reaktionszentren, f{\"u}r A1 des Photosystems I sowie f{\"u}r Ubisemichinon in gefrorenem 2-Propanol erstellt. Nach der Skalierung der berechneten \&\#8710;gx Komponenten um 0.92 stimmen die auf gradienten-korrigertem DFT-Niveau mit den bestenverf{\"u}gbaren Spin-Bahn-Operatoren berechneten Komponenten \&\#8710;gx sowie \&\#8710;gy mit den Hochfeld-EPR-Referenzdaten innerhalb der experimentellen Genauigkeit in allen vier untersuchten Systemen {\"u}berein. Der Einfluss verschiedener nichtkovalenter Wechselwirkungen zwischen dem Semichinon und dem Protein wurde durch das sukzessive Verkleinern der Modellsysteme studiert. Dabei wurde festgestellt, dass der Effekt der Wasserstoffbr{\"u}ckenbindung zu den beiden Carbonyl-Sauerstoff-Atomen der Semichinone wegen der kompensierenden Spinpolarisationseffekte nicht additiv ist. Der Effekt der Tryptophan-Semichinon \&\#61552;-Stapelung hat auf QA und A1 unterschiedliche Auswirkungen. Dies konnte auf die andersartige Ausrichtung der wechselwirkenden Fragmente sowie auf die unterschiedliche Spinpolarisation zur{\"u}ckgef{\"u}hrt werden. Im n{\"a}chsten Teil dieser Arbeit wurden Semichinone der so genannten „hoch-affinen" Bindungsstelle der Chinoloxidase (QH) untersucht. Vor kurzem durchgef{\"u}hrte Multifrequenz-EPR-Studien der QH der Chinoloxidase legten asymmetrische Wasserstoffbr{\"u}ckenbindungen zum Semichinonradikalanion nahe. Eine einzelne Wasserstoffbr{\"u}ckenbindung zum O1 des Carbonyls war ein weiteres vorgeschlagenes Strukturmerkmal, das allerdings im Gegensatz zu fr{\"u}heren experimentellen Hinweisen st{\"u}nde. Wir haben DFT Berechnungen der EPR-Parameter (g-Tensoren, 13C-, 1H- und 17O-Hyperfeinkopplungstensoren) einer großen Anzahl von supermolekularen Modellkomplexen durchgef{\"u}hrt, um detaillierte Einblicke in die Zusammenh{\"a}nge zwischen Struktur, Umgebung und EPR-Parametern von Ubisemichinon-Radikalanionen zu gewinnen. Ein Bindungsmodell, das nur eine einzige Wasserstoffbr{\"u}cke ber{\"u}cksichtigt, ist demnach weder in der Lage, die experimentell beobachteten niedrigen gx-Komponenten der g-Tensoren, noch die beobachtete große Asymmetrie von 13C-Carbonyl HFC-Tensoren zu erkl{\"a}ren. Basierend auf einem detaillierten Vergleich zwischen Rechnung und Experiment wurde ein Modell mit zwei Wasserstoffbr{\"u}ckenbindungen zu O1 und einer Wasserstoffbr{\"u}ckenbindung zu O4 f{\"u}r QH vorgeschlagen. Ein Modell mit jeweils einer Wasserstoffbr{\"u}ckenbindung mehr kann jedoch ebenfalls nicht v{\"o}llig ausgeschlossen werden. Zus{\"a}tzlich wurden weitere erkannte Zusammenh{\"a}nge zwischen EPR-Parametern und Wasserstoffbr{\"u}ckenbindungen von Ubisemichinonen in Proteinen diskutiert. Theoretische Untersuchungen bez{\"u}glich des Mechanismus des Elektronentransfers im Photosystem I gaben den Anstoß, relativ kleine rotierende molekulare Motoren, bestehend aus intramolekular verbundenen Dyaden, welche eine Chinoneinheit sowie eine Pyrrol- oder Indoleinheit verkn{\"u}pfen, zu modellieren. Die Berechnungen zeigten, dass f{\"u}r einige Systeme, abh{\"a}ngig von der L{\"a}nge und den Ankn{\"u}pfungspunkten der verbundenen Ketten, eine Reduktion des Chinons zum Semichinonradikalanion oder Chinolatdianion mit einer reversiblen intramolekularen Neuorientierung weg von einer \&\#61552;-Stapelung und hin zu einer T-Stapelung auftritt. Durch die Umstrukturierung wird eine Wasserstoffbr{\"u}ckenbindung der Pyrrol- oder Indol-N-H-Funktion zum Semichinon- oder Chinolat-\&\#61552;-Systems nach der Reduktion ausgebildet. In einigen Systemen bilden sich jedoch Wasserstoffbr{\"u}ckenbindungen zum Semichinon- oder Chinolat-Sauerstoffatom aus, die gegen{\"u}ber der T-Stapelung bevorzugt werden. Die intramolekularen Wechselwirkungen ver{\"a}ndern das Redoxpotential des Chinons. Der elektronische g-Tensor, welcher f{\"u}r die Semichinone berechnet wurde, beweist eindeutig das Vorhandensein dieser Wasserstoffbr{\"u}ckenbindung zum Semichinon. g-Tensoren stellen somit eine geeignete Kenngr{\"o}ße in der EPR Spektroskopie dar, um strittige Strukturen aufzukl{\"a}ren. Wir halten auch einen intramolekularer Protonentransfer im dianionischen Zustand f{\"u}r m{\"o}glich. Im Gegensatz zu Semichinonen welche paramagnetische Zust{\"a}nde von Enzymen-Cofaktoren darstellen sind Glyclradikale echte Proteinradikale. Als Schritt zum tiefer gehenden Verst{\"a}ndnis von EPR-Parametern des Glycylradikals in Proteinen wurden die Hyperfeinkopplungstensoren und insbesondere der g-Tensor des N-Acetylglycyls durch systematische hochgenaue quantenchemischen Berechnungen an diversen geeigneten Modellsystemen untersucht. Die quantitative Berechnung von g-Tensoren f{\"u}r solche Glycyl-{\"a}hnlichen Radikale ist eine enorme Herausforderung, insbesondere wegen der sehr kleinen g-Anisotropie. Diese ist zudem mit einer nichtsymmetrischen delokalisierten Spindichteverteilung auf verschiedene Atome des Molek{\"u}ls verbunden, die mit vergleichbaren Spinbahneffekten zum g-Tensor beitragen. Die Wahl eines geeigneten Eichursprungs des magnetischen Vektorpotentials und geeigneter Spin-Bahn-Operatoren, gestaltete sich weitaus anspruchsvoller als in vorausgegangen Arbeiten zu g-Tensoren organischer Radikale. Umgebungseffekte, die durch supermolekulare Wasserstoffbr{\"u}ckenbindungs-Modelle ber{\"u}cksichtigt wurden, stellen sich hingegen als nicht so schwerwiegend heraus, zum Teil durch die gegenseitige Kompensierung des Einflusses von intramolekularen und intermolekularen Wasserstoffbr{\"u}ckenbindungen. Den gr{\"o}ßten Einfluss auf den g-Tensor {\"u}bt die Konformation des Radikals aus. Die angewendete DFT Methode {\"u}bersch{\"a}tzt systematisch sowohl die \&\#8710;gx als auch die \&\#8710;gy Komponente des g-Tensors. Dieses Ergebnis ist wichtig f{\"u}r Untersuchungen von Protein-Glycyl-Radikalen (siehe weiter unten). Die 1H\&\#61537; und 13C\&\#61537; Hyperfeinkopplungen h{\"a}ngen nur wenig von den gew{\"a}hlten supermolekularen Modellen ab und scheinen weniger empfindlich gegen{\"u}ber der genauen Struktur und Umgebung des Molek{\"u}ls zu sein. Die Anzahl der bekannten Enzyme, die als funktionelle Gruppe ein Glycyl-Radikal besitzen, wird immer gr{\"o}ßer. Wir f{\"u}hrten in dieser Arbeit eine systematische quantenchemische Studie zur Spindichteverteilung, elektronischem g-Tensor und Hyperfeinkopplungskonstanten diverser Modelle von Protein-gebundenen Glycylradikalen durch. Wie schon bei N-Acetylglycyl gesehen (siehe oben) stellt auch hier die geringe g-Anisotropie dieses delokalisierten, asymmetrischen Systems selbst f{\"u}r moderne Rechenmethoden eine betr{\"a}chtliche Herausforderung dar. Dies betrifft zum einen die Qualit{\"a}t der Strukturoptimierung, zum anderen die Wahl des Spin-Bahn-Operators und des Eichursprungs des magnetischen Vektorpotentials. Umgebungseffekte aufgrund der Ausbildung von Wasserstoffbr{\"u}ckenbindungen h{\"a}ngen in komplizierter Weise von den verschiedenen intramolekularen Wasserstoffbr{\"u}ckenbindungen verschiedener Konformationen des Radikals ab. Die jeweilige Konformation hat insgesamt gesehen die gr{\"o}ßte Auswirkung auf den berechneten g-Tensor (jedoch weniger auf den Hyperfeinkopplungstensor). Wir diskutierten dies im Zusammenhang verschiedener g-Tensoren, welche vor kurzem durch Hochfeld-EPR Messungen f{\"u}r drei verschiedene Enzyme erhalten wurden. Basierend auf den Resultaten der Kalibrierungsstudie an N-Acetylgylcyl, schlagen wir vor, dass das Glycylradikal, welches f{\"u}r die E.coli anaerobische Ribonucleotid Reductase (RNR) beobachtet wurde, eine gestreckte Konformation besitzt, die sich von derjenigen der entsprechenden Radikale der Pyruvat Format-Lyase (PFL) oder Benzylsuccinatsynthase (BSS) unterscheidet.}, subject = {Biologisches System}, language = {en} } @phdthesis{MalkinOndik2006, author = {Malkin Ondik, Irina}, title = {Development, validation, and application of new relativistic methods for all-electron unrestricted two-component calculations of EPR parameters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this work we have developed the method of back-transfoprmation within the Douglas-Kroll-Hess (DKH) framework, which has simplified the picture-change consistent transformation of first-order property operators in the DKH approach, making the implementation feasible. This has enabled us to implement the first all-electron scalar relativistic calculations of hyperfine coupling tensors at DKH2 level. Furthemore we have presented a general, relativistic two-component DFT approach for the unrestricted calculations of electronic g-tensors, based on DKH Hamiltonian. Additionally we have derived the expressions for the evaluation of hyperfine structurs and two-component unrestricted treatment of g-tensor within the Resolution of Identity Dirac Kohn Sham method developed by Stanoslav Komorovsky and Michal Repisky in collaboration with other members of the group of V. G. Malkin. All these approaches have been extensively validated.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Remenyi2006, author = {Remenyi, Christian}, title = {Density Functional Studies on EPR Parameters and Spin-Density Distributions of Transition Metal Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19848}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In dieser Arbeit wurden EPR-Parameter und Spindichteverteilungen von {\"U}bergangsmetallkomplexen mit Hilfe der Dichtefunktionaltheorie (DFT) berechnet. Um das Potential der DFT bei der Beschreibung solcher Systeme zu zeigen, wurden mehrere Validierungsstudien durchgef{\"u}hrt, die in den Kapiteln 3-5 vorgestellt werden. Die Kapitel 6-8 besch{\"a}ftigen sich dagegen eher mit konkreten chemischen Fragestellungen, die einige biologisch relevante {\"U}bergangsmetallkomplexe betreffen.}, subject = {Dichtefunktionalformalismus}, language = {en} }