@phdthesis{Summa2014, author = {Summa, Alexander}, title = {Modelling high-energy observables of supernova explosions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94608}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work, high-energy observables arising during different phases of SN explosions are studied with respect to their potential for allowing conclusions on suggested explosion scenarios and physical mechanisms that are thought to influence the evolution of SNe in a major way. The focus on selected observables at keV and MeV energies is motivated by the appearance of large degeneracies that can even be found for disparate scenarios in many wavelength regimes. Since the discussed emission in the high-energy regime is directly linked to nuclear processes being usually very distinct for different suggested physical models, the signatures at keV and MeV energies allow for meaningful comparisons of simulations with observations.}, subject = {Supernova}, language = {en} } @phdthesis{Baerwald2013, author = {Baerwald, Philipp}, title = {Neutrinos from gamma-ray bursts, and the multi-messenger connection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85333}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In this work, we take a look at the connection of gamma-ray bursts (GRBs) and ultra-high-energy cosmic rays (UHECR) as well as the possibilities how to verify this connection. The currently most promising approach is based on the detection of high-energy neutrinos, which are associated with the acceleration of cosmic rays. We detail how the prompt gamma-ray emission is connected to the prediction of a neutrino signal. We focus on the interactions of photons and protons in this regard. At the example of the current ANTARES GRB neutrino analysis, we show the differences between numerical predictions and older analytical methods. Moreover, we discuss the possibilities how cosmic ray particles can escape from GRBs, assuming that UHECR are entirely made up of protons. For this, we compare the commonly assumed neutron escape model with a new component of direct proton escape. Additionally, we will show that the different components, which contribute to the cosmic ray flux, strongly depend on the burst parameters, and test the applicability on some chosen GRBs. In a further step, we continue with the considerations regarding the connection of GRBs and UHECR by connecting the GRB source model with the cosmic ray observations using a simple cosmic ray propagation code. We test if it is possible to achieve the observed cosmic ray energy densities with our simple model and what the consequences are regarding the prompt GRB neutrino flux predictions as well as the cosmogenic neutrinos. Furthermore, we consider the question of neutrino lifetime and how it affects the prompt GRB neutrino flux predictions. In a final chapter, we show that it is possible to apply the basic source model with photohadronic interactions to other types of sources, using the example of the microquasar Cygnus X-3.}, subject = {Neutrino}, language = {en} } @phdthesis{Wisniewski2011, author = {Wisniewski, Martina}, title = {Numerische Untersuchung von Turbulenz und Teilchentransport in der Heliosphaere}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64652}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Hochenergetische solare Teilchen werden bei ihrem Transport durch die Heliosph{\"a}re an turbulenten Magnetfeldern gestreut. F{\"u}r das Verst{\"a}ndnis dieses Streuprozesses ergeben sich aus heutiger Sicht zwei wesentliche Hindernisse: - Bei der Streuung hochenergetischer Teilchen an turbulenten Magnetfeldern handelt es sich um einen nichtlinearen Prozess, der durch analytische Theorien kaum zu beschreiben ist. - Der Streuprozess h{\"a}ngt stark von den tats{\"a}chlichen Magnetfeldern und somit auch von der Magnetfeldturbulenz ab. Unser bisheriges Verst{\"a}ndnis der heliosph{\"a}rischen Turbulenz ist leider aufgrund sp{\"a}rlicher experimenteller Daten deutlich eingeschr{\"a}nkt, was eine qualifizierte Umsetzung in analytischen und numerischen Ans{\"a}tzen deutlich erschwert. Dies machte in der Vergangenheit k{\"u}nstliche Annahmen f{\"u}r die Modellerstellung notwendig. In dieser Arbeit wird der Teilchentransport mit Hilfe der Simulation von Testteilchen in einem turbulenten, magnetohydrodynamischen Plasma untersucht. Durch die Testteilchen werden auch die nichtlinearen Streuprozesse korrekt wiedergegeben, wodurch das erste hier genannte Hindernis {\"u}berwunden wird. Dies wurde auch bereits in fr{\"u}heren numerischen Untersuchungen erfolgreich angewendet. Die Modellierung der Turbulenz f{\"u}r den Fall des Teilchentransports erfolgt in dieser Arbeit erstmalig auf Grundlage der magnetohydrodynamischen Gleichungen. Dabei handelt es sich um die mathematisch korrekte Wiedergabe der Magnetfeldturbulenz unterhalb der Ionen-Gyrofrequenz mit nur geringen numerischen Einschr{\"a}nkungen. Dar{\"u}ber hinaus erlaubt ein auf das physikalische Szenario anpassbarer Turbulenztreiber eine noch realistischere Simulation der Turbulenz. Durch diesen universell g{\"u}ltigen, numerischen Ansatz k{\"o}nnen f{\"u}r das zweite hier angegebene Hindernis jegliche k{\"u}nstlichen Annahmen vermieden werden. Die drei im Rahmen dieser Arbeit erstmals zusammengef{\"u}hrten Methoden (Testteilchen, magnetohydrodynamische Turbulenz, Turbulenztreiber) erm{\"o}glichen somit eine Untersuchung und Analyse von Transport- und Turbulenzph{\"a}nomenen mit herausragender Qualit{\"a}t, die insbesondere f{\"u}r den Fall des Teilchentransports einen direkten Anschluss an experimentelle Ergebnisse erm{\"o}glichen. Wichtige Ergebnisse im Rahmen dieser Arbeit sind: - der Nachweis der Drei-Wellen-Wechselwirkung f{\"u}r schwache und einsetzende starke Turbulenz. - eine Analyse der Anisotropie der Turbulenz im Bezug auf das Hintergrundmagnetfeld in Abh{\"a}ngigkeit vom Treibmodell. Insbesondere die Anisotropie ist experimentell bislang kaum erfassbar. - eine Untersuchung der Auswirkung der Gyroresonanzen auf die Diffusionskoeffizienten hochenergetischer solarer Teilchen in allgemeiner Form. - die Simulation des Teilchentransports in der Heliosph{\"a}re auf Grundlage experimenteller Messdaten. Die genauere Analyse der Simulationsergebnisse erm{\"o}glicht insgesamt einen Zugang zum Verst{\"a}ndnis des Transports, der durch experimentelle Untersuchungen nicht erfassbar ist. Bei der Simulation wurden lediglich die Magnetfeldst{\"a}rke sowie die untersuchte Teilchenenergie vorgegeben. Aus der Analyse der Simulationsergebnisse ergibt sich dieselbe mittlere freie Wegl{\"a}nge, wie sie auch durch andere Verfahren direkt aus den Messergebnissen gewonnen werden konnte. Auch die vorwiegende Ausrichtung der hochenergetischen Teilchen parallel und antiparallel zum Hintergrundmagnetfeld in der Simulation entspricht experimentellen Untersuchungen. Es zeigt sich, dass diese allein aus den resonanten Streuprozessen der Teilchen mit den Magnetfeldern resultiert. Des Weiteren werden die Art der Diffusion, der Energieverlust der Teilchen w{\"a}hrend des Transportprozesses sowie die G{\"u}ltigkeit der quasilinearen Theorie untersucht.}, subject = {Sonnenwind}, language = {de} }