@phdthesis{Naehle2011, author = {N{\"a}hle, Lars}, title = {Monomodige und weit abstimmbare Halbleiterlaser im GaSb-Materialsystem im Wellenl{\"a}ngenbereich von 3,0 - 3,4 μm}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70538}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Ein Ziel der Arbeit war die Entwicklung spektral monomodiger DFB-Lasern im Wellenl{\"a}ngenbereich von 3,0-3,4µm. Diese sollten auf spezielle Anwendungen in der Absorptionsspektroskopie an Kohlenwasserstoffen gezielt angepasst werden. Hierf{\"u}r wurden zwei auf GaSb-Material basierende Lasertypen untersucht - Interbandkaskadenlaser (ICL) und Diodenlaser mit quin{\"a}ren AlGaInAsSb-Barrieren- und Wellenleiter-Schichten. F{\"u}r das ICL-Material wurde ein DFB-Prozess basierend auf vertikalen Seitengittern entwickelt. Dieser Ansatz erm{\"o}glichte monomodigen Laserbetrieb bei Realisierung der Laser mit Kopplungsgitter in nur einem {\"A}tzschritt und ohne epitaktischen {\"U}berwachstumsschritt. Maximal m{\"o}gliche Betriebstemperaturen von ~0°C f{\"u}r die auf dem verf{\"u}gbaren epitaktischen Material entwickelten Laser wurden bestimmt. Eine Diskussion der thermischen Eigenschaften der Laser deckte Gr{\"u}nde f{\"u}r die Limitierung der Betriebstemperatur auf. M{\"o}glichkeiten zur Optimierung der Leistungsf{\"a}higkeit und Steigerung der Betriebstemperatur beim ICL-Ansatz wurden hierauf basierend vorgestellt. Als kritischster Parameter wurde hier die epitaxiebestimmte Temperaturstabilit{\"a}t der Laserschwelle ausgemacht. Weitere Entwicklungen umfassten die Herstellung von DFB-Lasern mit dem erw{\"a}hnten Diodenlasermaterial mit quin{\"a}ren Barrieren. Es kam eine Prozessierung der Bauteile ohne {\"U}berwachstum unter Verwendung von lateralen Metallgittern zur Modenselektion zum Einsatz. Die Bestimmung optischer Parameter zur Entwicklung von Lasern mit guter DFB-Ausbeute wurde f{\"u}r das Epitaxiematerial mit quin{\"a}ren Barrieren >3,0µm von Wellenleiter-Simulationen unterst{\"u}tzt. Die Definition der Gitterstrukturen wurde auf niedrige Absorptionsverluste optimiert. So hergestellte Laser zeigten exzellente Eigenschaften mit maximalen Betriebstemperaturen im Dauerstrichbetrieb von >50°C und spektral monomodiger Emission um 2,95µm mit Seitenmodenunterdr{\"u}ckungen (SMSR) bis 50dB. Diesem Konzept entsprechend wurden DFB-Laser speziell f{\"u}r die Acetylen-Detektion bei Wellenl{\"a}ngen von 3,03µm und 3,06µm entwickelt. Die f{\"u}r ~3,0µm entwickelte und erfolgreich angewendete DFB-Prozessierung wurde daraufhin auf den Wellenl{\"a}ngenbereich bis 3,4µm angepasst. Ein Prozesslauf mit verbesserter W{\"a}rmeabfuhr, ohne die Verwendung eines Polymers, wurde entwickelt. Es konnten DFB-Laser hergestellt werden, die fast den gesamten Wellenl{\"a}ngenbereich von 3,3-3,4µm abdeckten. Maximale Betriebstemperaturen dieser Laser lagen bei >20°C in Dauerstrichbetrieb bei ausgezeichneten spektralen Eigenschaften (SMSR 45dB). Spezielle Bauteile im Bereich 3,34-3,38µm, u.a. f{\"u}r die Detektion von Methan, Ethan und Propan, wurden entwickelt. Die in dieser Arbeit auf Diodenlasermaterial mit quin{\"a}ren Barrieren entwickelten DFB-Laser definieren f{\"u}r den gesamten Wellenl{\"a}ngenbereich von 2,8-3,4µm den aktuellen Stand der Technik f{\"u}r monomodige Laseremission durch direkte strahlende {\"U}berg{\"a}nge. Sie stellen außerdem f{\"u}r den Wellenl{\"a}ngenbereich von 3,02-3,41µm die einzigen ver{\"o}ffentlichten DFB-Laser in cw-Betrieb bei Raumtemperatur dar. Eine maximale monomodige Emissionswellenl{\"a}nge f{\"u}r Diodenlaser von 3412,1nm wurde erreicht. Ein weiteres Ziel der Arbeit war die Entwicklung weit abstimmbarer Laser von 3,3-3,4µm zur Erm{\"o}glichung erweiterter Anwendungen in der Kohlenwasserstoff-Gassensorik. Hierf{\"u}r wurde ein Konzept zweisegmentiger Laser mit bin{\"a}ren, {\"u}berlagerten Gittern verwendet. F{\"u}r diese sogenannten BSG-Laser konnte durch Simulationen unterst{\"u}tzt der Einfluss des kritischen Parameters der Phase der Bragg-Moden an den Facetten untersucht werden. Ein dementsprechend phasenoptimiertes Design der Gitterstrukturen wurde in den Segmenten der Laser angewendet. Simulationen des Durchstimmverhaltens der Laser wurden diskutiert und Einsch{\"a}tzungen {\"u}ber das reale Verhalten in hergestellten Bauteilen gegeben. Die entwickelten Laser wiesen Emission in bis zu vier ansteuerbaren, monomodigen Wellenl{\"a}ngenkan{\"a}len auf. Sie zeigten ein den Simulationen entsprechendes, sehr gutes Durchstimmverhalten in den Kan{\"a}len (bis zu ~30nm). Die Entwicklung eines bestimmten Lasers in dieser Arbeit war speziell auf die industrielle Anwendung in einem Sensorsystem mit monomodigen Emissionen um 3333nm und 3357nm ausgelegt. F{\"u}r diese Wellenl{\"a}ngenkan{\"a}le wurden spektrale Messungen mit hohem Dynamikbereich gemacht. Mit SMSR bis 45dB war eine hervorragende Anwendbarkeit in einem Sensorsystem gew{\"a}hrleistet. Der Aufbau mit nur zwei Lasersegmenten garantiert eine einfache Ansteuerung ohne komplexe Elektronik. Die in dieser Arbeit entwickelten weit abstimmbaren Laser stellen die bisher langwelligsten, monolithisch hergestellten, weit abstimmbaren Laser dar. Sie sind außerdem die bislang einzigen zweisegmentigen BSG-Laser, die in durch simultane Stromver{\"a}nderung durchstimmbaren Wellenl{\"a}ngenkan{\"a}len ein Abstimmverhalten mit konstant hoher Seitenmodenunterdr{\"u}ckung und ohne Modenspr{\"u}nge zeigen.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Mahnkopf2005, author = {Mahnkopf, Sven}, title = {Photonic crystal based widely tunable laser diodes and integrated optoelectronic components}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In a first aspect of this work, the development of photonic crystal based widely tunable laser diodes and their monolithic integration with photonic crystal based passive waveguide and coupler structures is explored theoretically and experimentally. In these devices, the photonic crystal is operated in the photonic bandgap which can be used for the realization of effective reflectors and waveguide structures. Such tunable light sources are of great interest for the development of optical network systems that are based on wavelength division multiplexing. In a second aspect of this work, the operation of a photonic crystal block near the photonic band edge is investigated with respect to the so-called superprism effect. After a few introductory remarks that serve to motivate this work, chapter 3 recapitulates some aspects of semiconductor lasers and photonic crystals that are essential for the understanding of this work so that the reader should be readily equipped with the tools to appreciate the results presented in this work.}, subject = {Laserdiode}, language = {en} } @phdthesis{Brunner2005, author = {Brunner, Raimund}, title = {Analyse optischer Heterodynsignale zur dynamischen Charakterisierung von Diodenlasern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17195}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Die stetige Degradation von Halbleiterlasern, speziell bei Bleichalkogenidlasern, erfordert in spektroskopischen Systemen eine regelm{\"a}ßige {\"U}berwachung typischer Eigenschaften wie Abstimmcharakteristik und Linienbreite. Im Hinblick auf einen m{\"o}glichst hohen Automatisierungsgrad wird langfristig eine Online-Analysemethode zur {\"U}berwachung notwendig sein. Die {\"u}blicherweise verwendete Methode, den Laserarbeitspunkt {\"u}ber zugrunde liegende Modenkarten einzustellen, hat den gravierenden Nachteil, dass solche Modenkarten in der Regel nicht unter dynamischen Modulationsbedingungen vermessen wurden. Gerade im dynamischen Fall sind diese Karten empfindlich abh{\"a}ngig gegen{\"u}ber Ver{\"a}nderungen durch Zyklieren und Degradieren des Lasers. Etalons (Etalonsignale) sind bez{\"u}glich der Abstimmcharakteristik nicht zuverl{\"a}ssig genug und von daher f{\"u}r eine w{\"u}nschenswerte Automatisierung nicht ausreichen. Modenspr{\"u}nge oder schwache R{\"u}ckkopplungseffekte lassen sich im Interferogramm nicht ohne weiteres identifiziert. Eine erweiterte Analyse der St{\"o}rungen dieser Interferogramme im Zeit-Frequenzbereich mittels einer AOK(Adaptive Optimal Kernel)-Transformation erwies sich speziell bei Signalen mit wenigen Perioden als deutlich aussagekr{\"a}ftiger. Mittels optischer Homodynmischung wurde die Linienbreite von Bleichalkogenidlasern ermittelt. Bei inkoh{\"a}renter {\"U}berlagerung entspricht die spektrale Verteilung der Mischung der Faltung der urspr{\"u}nglichen Verteilung mit sich selbst. Der Laser wird dabei nicht abgestimmt, die optische Laufzeitverz{\"o}gerung wurde mittels integrierter White-Zelle realisiert. Es wurde beobachtet, dass je nach Grad des Rauschens des Injektionsstroms, das Linienbreitenprofil von Lorentz nach Gauß {\"u}berging. Mit einem externen CO2-Laser als lokalen Oszillator wurden Heterodynmessungen durchgef{\"u}hrt. Die Linienbreite eines CO2-Lasers ist mit wenigen kHz im Vergleich zu derjenigen eines Bleichalkogenidlasers vernachl{\"a}ssigbar und die {\"U}berlagerung erfolgt absolut inkoh{\"a}rent. Gemessen wurden spektrale Verteilungen mit typischem Lorentzprofil von 10 MHz bis zu 100 MHz und dar{\"u}ber hinaus. Auff{\"a}llig waren h{\"a}ufig symmetrische Nebenpeaks, die in den Bereichen der Seitenflanken des Lorentzprofils auftraten. Anhand einer numerischen Simulation eines Modells einer Laserdiode, basierend auf Ratengleichungen mit f{\"u}r Bleichalkogenidlasern typischen Parameterwerten, konnte verdeutlicht werden, dass sich durch das nichtlineare Lasermodell ausgepr{\"a}gte Vielfache von Resonanzen bereits im Abstand von 25 MHz ausbilden k{\"o}nnen. Derartige Resonanzen tauchen im E-Feld-Spektrum als typische Relaxationsoszillationen in den Seitenb{\"a}ndern wieder auf und erkl{\"a}ren die in der Messung beobachteten Nebenpeaks innerhalb der spektralen Verteilung. Die St{\"a}rke der Seitenb{\"a}nder ist ein Maß f{\"u}r die Korrelation zwischen Phasen- und Amplitudenfluktuationen. Das Modell f{\"u}r die numerische Berechnung des E-Feldes wurde mit einem thermischen Verhalten erweitert. Eine umfassende Charakterisierungsmethode zur automatisierten Einstellung eines modulierten Lasersystems muss dynamisch und zeitaufgel{\"o}st erfolgen. Die Auswertung optischer Mischfrequenzen beschr{\"a}nkt sich dabei nicht mehr auf die direkte Interpretation von einzelnen Spektren, sondern erweitert sich auf die Analyse im Zeit-Frequenzraum. F{\"u}r eine direkte und schnelle Zeitfrequenztransformation bietet sich ein „Gefensterte Fouriertransformation" (STFT) an, die sich außerdem relativ einfach in moderne Signalprozessortechnik implementieren l{\"a}sst. Sie erweist sich als sehr robust und f{\"u}r die hier erforderliche Analyse von Heterodynsignalen als ausreichend. Mit der Festlegung des Analysefensters innerhalb einer STFT ist die Aufl{\"o}sung in Zeit und Frequenz fest definiert. Analysen von Mischsignalen mit einer kontinuierlichen Wavelettransformation haben vergleichsweise gezeigt, dass Details im Zeitfrequenzraum zwar besser herausgearbeitet werden k{\"o}nnen, jedoch ist der Rechenaufwand durch die variable Skalierung und somit stark redundante Analyse und ihre Darstellung unverh{\"a}ltnism{\"a}ßig gr{\"o}ßer. Eine Analyse des Linienbreitenprofils erfolgt dabei {\"u}ber die Entwicklung der Skalierung eines Signals. Die {\"u}ber Heterodynsignale ermittelte effektive Linienbreite bei einer modulierten Abstimmung sollte eher als „dynamische" oder „intrinsische" Laserlinienbreite bezeichnet werden. Eine direkte Korrelation der Frequenzvariation des Lasers mit dem Stromrauschen des Injektionsstroms ist offensichtlich. Die wirksame Bandbreite des Stromrauschens wird durch die Systemelektronik einerseits und die Modulationsbandbreite des Lasers andererseits begrenzt. Außer den wichtigen Parametern wie Abstimmung und Linienbreite lassen sich {\"u}ber die dynamische Zeitfrequenzanalyse von Heterodynsignalen dar{\"u}ber hinaus weitere Ph{\"a}nomene wie R{\"u}ckkopplung, Moden{\"u}berlagerung oder Einschwingverhalten aufgrund direkter Kopplung zwischen Intensit{\"a}ts­ und Frequenzmodulation beobachten.}, subject = {Laserdiode}, language = {de} }