@phdthesis{Levchenko2009, author = {Levchenko, Victor}, title = {Studies of CA 2+ -signaling and CL-conductance changes in response to abscisic acid, voltage changes and cold, in the plasma membrane of guard cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45309}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Land plants must control the transpiration water stream and balance it with carbon dioxide uptake for optimal photosynthesis. A highly specialized type of plant cell called guard cells have evolutionary appeared which are suited for this complicated purpose. Guard cells are located by pairs on aerated plant surface and form stomata - structural units, which represent highly regulated "watergate" (Roelfsema and Hedrich, 2005). Guard cells sense many environmental and internal plant-derived stimuli and by changing degree of their swelling tightly regulate diffusion of water vapor and other gases. Cell processes taking place in stomata during their movements had been a subject of intensive investigation for more than three decades (Schroeder et al., 2001; Assmann and Shimazaki, 1999). With use of electrophysiological technique the basic processes underlying stomatal movements were described (Thiel et al., 1992; Dietrich et. al., 2001; Roelfsema and Hedrich, 2005). Another set of questions arised between plant biologists is how the signals affecting stomatal aperture are transduced in guard cells starting from perception by receptor structures and ending on the osmodynamic motor components. Introduction of fluorescent microspectroscopy technique allowed to characterize some Ca2+ and H+-based signaling events, taking place in the cytoplasm during stomata function. Most of the processes, taking place in stomata were characterized in guard cell preparations, such as strips of isolated leaf epidermis or guard cell protoplasts, - cells with enzymaticaly digested cell walls. Some experimental observations although point that reactions of guard cells located in their natural environment, leaves of intact plants can differ from those could be registered in preparations. These deviations might be explained by the modulation of guard cell function by apoplastic factors originating from surrounding tissues like mesophyll or leaf epidermis (Roelfsema and Hedrich, 2002). On the other hand registration of physiological responses in prepared tissues may also contain possible artifacts, related to the preparation procedures. The aim of the experimental work presented here was to investigate the cell signaling events, taking place in guard cells upon plant stress hormone abscisic acid (ABA) and some other stimuli action. Abscisic acid is a compound that synthesized in plant roots upon drought and closes stomata in the leaf to prevent the plant organism from excessive water loss. Previous studies on guard cell of isolated epidermis and guard cell protoplasts showed, that ABA induces stomatal closure via activation of plasma membrane anion channels (Grabov et al., 1997; Pei et al, 1997). Anion channels are known to be activated by elevated 2 concentrations of cytoplasmic Ca2+ [Ca2+]cyt (Schroeder and Hagiwara, 1989; Hedrich et al., 1990). Application of Ca2+-sensitive fluorescent probes revealed [Ca2+]cyt increases in guard cells upon ABA action (McAinsh et al., 1990). This observation led to suggestion that [Ca2+]cyt directly participate in the transduction of ABA signal in guard cells. Although no direct evidences for co-occurrence of [Ca2+]cyt rises and following activation of anion channels upon ABA action was not presented until yet. Results of experimental work performed on intact Vicia faba, Commelina communis and Nicotiana plumbagnifolia plants showed that guard cells of intact plant leaves respond with transient activation of plasma membrane anion channels upon perception of ABA. Kinetics of the response is highly reproducible and seemed to be conserved between species. Although despite clear generation of anion current transients, no [Ca2+]cyt increases could be recorded with using fluorescent probe Fura-2 microinjected into the cytoplasm. Together with results of later study on intact Nicotiana tabacum guard cells, reported obligatory [Ca2+]cyt increases which were desynchronized with anion current transients (Marten et al., 2007b) this, may indicate that [Ca2+]cyt increases are not necessary component of ABA signal transduction pathway. Together with absence of the effect of cytoplasm-delivered Ca2+- mobilizing agents IP3, IP6 and NAADP on anion currents these data may suppose that role of [Ca2+]cyt in ABA signaling must be reassessed. Further interest represented characterization of [Ca2+]cyt signaling and homeostasis in intact guard cells comparing with those in prepared cells. Experiments revealed strong deviations in [Ca2+]cyt behavior between different measuring systems. While guard cells of intact plants were able to strictly maintain [Ca2+]cyt level upon experimental shifting of [Ca2+]cyt level in either direction of elevation or decrease, cells of isolated epidermis showed complete absence of such ability. Guard cell protoplasts showed even weaker [Ca2+]cyt regulation ability and were capable of low physiological [Ca2+]cyt levels maintaining only at depolarized membrane potentials. Apart to these differences, prepared guard cells showed also for-time less activation of anion currents by experimentally imposed [Ca2+]cyt increases. These data strongly suggest that registered in guard cell preparations [Ca2+]cyt signals may contain significant part of artifacts and must be carefully used for the building of models of guard cells signaling. Further experimental investigations are strongly required for understanding guard cell functioning, especially with relation of vacuoles participation. The experimental work was done by the author in the period from october 2001 until november 2004 under supervision of Professor Dr. Rainer Hedrich in laboratory of molecular plant physiology and biophysics at Julius-Maximillians University of W{\"u}rzburg, W{\"u}rz3 burg, Federal Republic of Germany. Scientific coordinator of the Ph. D. project is Dr. Max Robert Gustaaf Roelfsema, University of W{\"u}rzburg. Most of experimental results, presented here (chapter III) are also published elsewhere (Roelfsema et al., 2004; Langer et al., 2004; Levchenko et al., 2005, 2008). Chapter I intend to shortly introduce the reader into the field of guard cell research and point out the current level of understanding regarding this branch of plant research. Special attention is given to description of guard cell ion channels, their function and regulation, including the mechanisms of Ca2+-, H+- and phosphorylation-based signaling. This section is preceded by a short history of guard cell research and explains the actuality of presented work. In chapter II experimental techniques, methods and data processing approaches, used in the presented work are described. Technique used for electrophysiological registrations on intact plant leaves were used before and described in more details by Roelfsema et al. (2001). Fluorescent microspectroscopy technique was for the first time applied to intact plant leaves in this work and described in more details including calibration of Fura-2 based measurements. Chapter III presents the major results of the experimental work. In chapter IV the experimental results are discussed and put into context with current knowledge of guard cell function knowledge. Finally, remarks on perspectives of guard cell signaling research are drawn.}, subject = {Schließzelle}, language = {en} }