@phdthesis{Rudolf2013, author = {Rudolf, Ronald}, title = {Transcriptional Regulation of and by NFATc1 in Lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The transcription factor NFATc1 has been shown to regulate the activation and differentiation of T-cells and B-cells, of DCs and megakaryocytes. Dysregulation of NFAT signaling was shown to be associated with the generation of autoimmune diseases, malignant transformation and the development of cancer [71]. The primary goal of this work was to gain insights on Nfatc1 induction and regulation in lymphocytes and to find new direct NFATc1 target genes. Three new BAC -transgenic reporter mouse strains (tgNfatc1/Egfp, tgNfatc1/DE1 and tgNfatc1/DE2) were applied to analyze Nfatc1 induction and regulation in primary murine B- and T-cells. As a result, we were able to show the persistent requirement of immunoreceptor-signaling for constant Nfatc1 induction, particularly, for NFATc1/αA expression. Furthermore, we showed that NF-κB inducing agents, such as LPS, CpG or CD40 receptor engagement, in combination with primary receptor-signals, positively contributed to Nfact1 induction in B-cells [137]. We sought to establish a new system which could help to identify direct NFATc1 target genes by means of ChIP and NGS in genom-wide approaches. We were able to successfully generate a new BAC-transgene encoding a biotinylatable short isoform of NFATc1, which is currently injected into mice oocyte at the TFM in Mainz. In addition, in vivo biotinylatable NFATc1-isoforms were cloned and stably expressed in the murine B-cell lymphoma line WEHI-231. The successful use of these cells stably overexpressing either the short NFATc1/αA or the long NFATc1/βC isoform along with the bacterial BirA biotin ligase was confirmed by intracellular stainings, FACS analysis, confocal microscopy and protein IP. By NGS, we detected 2185 genes which are specifically controlled by NFATc1/αA, and 1306 genes which are exclusively controlled by NFATc1/βC. This shows that the Nfatc1 locus encodes "two genes" which exhibit alternate, in part opposite functions. Studies on the induction of apoptosis and cell-death revealed opposed roles for the highly inducible short isoform NFATc1/αA and the constantly expressed long isoform NFATc1/βC. These findings were confirmed by whole transcriptome-sequencing performed with cells overexpressing NFATc1/αA and NFATc1/βC. Several thousand genes were found to be significantly altered in their expression profile, preferentially genes involved in apoptosis and PCD for NFATc1/βC or genes involved in transcriptional regulation and cell-cycle processes for NFATc1/αA. In addition we were able to perform ChIP-seq for NFATc1/αA and NFATc1/βC in an ab-independent approach. We found potential new target-sites, but further studies will have to address this ambitious goal in the future. In individual ChIP assays, we showed direct binding of NFATc1/αA and NFATc1/βC to the Prdm1 and Aicda promoter regions which are individually controlled by the NFATc1 isoforms.}, subject = {Lymphozyt}, language = {en} }