@article{WagenbrennerMayerWagnerRudertetal.2021, author = {Wagenbrenner, Mike and Mayer-Wagner, Susanne and Rudert, Maximilian and Holzapfel, Boris Michael and Weissenberger, Manuel}, title = {Combinations of hydrogels and mesenchymal stromal cells (MSCs) for cartilage tissue engineering — a review of the literature}, series = {Gels}, volume = {7}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels7040217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250177}, year = {2021}, abstract = {Cartilage offers limited regenerative capacity. Cell-based approaches have emerged as a promising alternative in the treatment of cartilage defects and osteoarthritis. Due to their easy accessibility, abundancy, and chondrogenic potential mesenchymal stromal cells (MSCs) offer an attractive cell source. MSCs are often combined with natural or synthetic hydrogels providing tunable biocompatibility, biodegradability, and enhanced cell functionality. In this review, we focused on the different advantages and disadvantages of various natural, synthetic, and modified hydrogels. We examined the different combinations of MSC-subpopulations and hydrogels used for cartilage engineering in preclinical and clinical studies and reviewed the effects of added growth factors or gene transfer on chondrogenesis in MSC-laden hydrogels. The aim of this review is to add to the understanding of the disadvantages and advantages of various combinations of MSC-subpopulations, growth factors, gene transfers, and hydrogels in cartilage engineering.}, language = {en} } @article{HahnBeudertGutmannetal.2021, author = {Hahn, Lukas and Beudert, Matthias and Gutmann, Marcus and Keßler, Larissa and Stahlhut, Philipp and Fischer, Lena and Karakaya, Emine and Lorson, Thomas and Thievessen, Ingo and Detsch, Rainer and L{\"u}hmann, Tessa and Luxenhofer, Robert}, title = {From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking}, series = {Macromolecular Bioscience}, volume = {21}, journal = {Macromolecular Bioscience}, number = {10}, doi = {10.1002/mabi.202100122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257542}, year = {2021}, abstract = {Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.}, language = {en} }