@article{HolzschuhDaineseGonzalezVaroetal.2016, author = {Holzschuh, Andrea and Dainese, Matteo and Gonzalez-Varo, Juan P. and Mudri-Stojnic, Sonja and Riedinger, Verena and Rundl{\"o}f, Maj and Scheper, Jeroen and Wickens, Jennifer B. and Wickens, Victoria J. and Bommarco, Riccardo and Kleijn, David and Potts, Simon G. and Roberts, Stuart P. M. and Smith, Henrik G. and Vil{\`a}, Montserrat and Vujic, Ante and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe}, series = {Ecology Letters}, volume = {19}, journal = {Ecology Letters}, number = {10}, doi = {10.1111/ele.12657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187356}, pages = {1228-1236}, year = {2016}, abstract = {Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator- dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes.}, language = {en} } @phdthesis{Schneider2015, author = {Schneider, Gudrun}, title = {Effects of adjacent habitats and landscape composition on biodiversity in semi-natural grasslands and biological pest control in oilseed rape fields}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113549}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {1) Modern European agricultural landscapes form a patchy mosaic of highly fragmented natural and semi-natural habitat remnants embedded in a matrix of intensively managed agricultural land. In those landscapes many organism frequently cross habitat borders including the crop - non-crop boundary, hereby connecting the biotic interactions of multiple habitat types. Therefore biodiversity and ecosystem functions within habitats are expected to depend on adjacent habitat types and the surrounding landscape matrix. In this thesis the biodiversity of non-crop habitats, and ecosystem services and disservices in crop habitats were studied in the human-dominated agricultural landscape in the district Lower Franconia, Bavaria, Germany. First we examined the effect of adjacent habitat type on species composition, diversity and ecosystem functions in semi-natural calcareous grasslands, a biodiversity-rich habitat of high conservation value (chapter 2 and 3). Second we studied the effect of habitat composition in the landscape on herbivory, biological pest control and yield in oilseed rape fields (chapter 4). 2) We examined the effect of adjacent habitat type on the diversity of carabid beetles in 20 calcareous grasslands using pitfall traps. Half of the grasslands were adjacent to a coniferous forest and half to a cereal crop field. We found different species compositions of carabid beetles depending on adjacent habitat type. In addition calcareous grasslands adjacent to crop fields harboured a higher species richness and activity density but a lower evenness of carabid beetles than calcareous grasslands adjacent to forests. These differences can be explained by the spillover of carabid beetles from the adjacent habitats. After crop harvest carabid beetle activity density in crop fields decreased while in parallel the activity density in the calcareous grasslands adjacent to the crop fields increased, indicating an unidirectional carabid beetle spillover. Our results underline that type and management of adjacent habitats affect community composition and diversity in calcareous grasslands. Therefore nature conservation measures, which focused on the improvement of local habitat quality so far, additionally need to consider adjacent habitat type. 3) In addition to carabid beetle communities we also surveyed predation rates of ground-dwelling predators on the same calcareous grasslands in two study periods (June and late August). As ground-dwelling predators of forests or crop fields can move into adjacent calcareous grasslands we expected different predation rates depending on adjacent habitat type. We exposed in total 32.000 lady bird eggs as prey items on the calcareous grasslands in distances of 5 and 20m from the habitat border. We found higher predation rates on calcareous grasslands adjacent to forests than on calcareous grasslands adjacent to crop fields, but only on cool days. On warm days a very high extent (often 100\%) of the exposed prey items were consumed adjacent to both habitat types, which did not allow the detection of possible differences between the adjacent habitat types. Predation rates differed not between the two study periods or the two distances to the habitat edge. The higher predation rates adjacent to forests can be explained by the spillover of ground-dwelling predators from forests into calcareous grasslands. Our results show, that spillover into semi-natural habitats affects ecosystem functioning in addition to species composition and diversity. 4) In chapter 4 of this thesis we examined the effect of spatiotemporal changes in crop cover on pest - natural enemy interactions and crop yields. During two study years we surveyed the abundance of adult and larval pollen beetles, parasitism of pollen beetle larvae by a hymenopteran parasitoid and oilseed rape yields of 36 oilseed rape fields. The surrounding landscape of the fields (1 km radius) differed in the oilseed rape proportion and in the inter-annual change in the oilseed rape proportion since the previous year. We found a dilution effect, i.e. a decreasing abundance with increasing oilseed rape proportions, for pollen beetle larvae and parasitoids in both study years and for adult pollen beetles in one study year. Oilseed rape yields increased with increasing oilseed rape proportions. Inter-annual changes in oilseed rape proportions led to inter-annual crowding and dilution effects for pollen beetles, but had no effect on parasitism or yield. Our results indicate the potential to reduce pest loads and increase yields in intensively managed oilseed rape fields by a coordinated management of the spatiotemporal oilseed rape cover in the landscape. 5) In summary, we showed in this thesis that the biodiversity and functioning of crop and non-crop habitats within agricultural landscapes is affected by the spillover of organisms and thus by the habitat composition in the close surrounding and in the broader landscape context. Spillover affects also ecosystem services and disservices and therefore crop productivity. Thereby the spatial and temporal variation of specific crop types in the landscape can be of particular importance for crop yields. Thus a coordinated landscape wide management can help to optimize both biodiversity conservation and the delivery of ecosystem services and thus crop yields. Future studies integrating landscape effects across several ecosystem functions, multiple taxonomic groups and different crop types are necessary to develop definite landscape management schemes.}, subject = {Landschafts{\"o}kologie}, language = {en} } @article{HolzschuhDormannTscharntkeetal.2013, author = {Holzschuh, Andrea and Dormann, Carsten F. and Tscharntke, Teja and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops enhance wild bee abundance}, series = {Oecologia}, volume = {172}, journal = {Oecologia}, number = {2}, doi = {dx.doi.org/10.1007/s00442-012-2515-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126852}, pages = {447-484}, year = {2013}, abstract = {Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 \% when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 \% higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats.}, language = {en} } @article{HolzschuhDormannTscharntkeetal.2013, author = {Holzschuh, Andrea and Dormann, Carsten F. and Tscharntke, Teja and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops enhance wild bee abundance}, series = {Oecologia}, volume = {172}, journal = {Oecologia}, number = {2}, doi = {10.1007/s00442-012-2515-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132149}, pages = {477-484}, year = {2013}, abstract = {Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 \% when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 \% higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats.}, language = {en} }