@unpublished{BraunschweigKrummenacherLichtenbergetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Lichtenberg, Crispin and Mattock, James and Sch{\"a}fer, Marius and Schmidt, Uwe and Schneider, Christoph and Steffenhagen, Thomas and Ullrich, Stefan and Vargas, Alfredo}, title = {Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201609601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141981}, pages = {9}, year = {2016}, abstract = {Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1'-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.}, subject = {Metallocene}, language = {en} } @unpublished{AuerhammerArrowsmithBissingeretal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Bissinger, Philipp and Braunschweig, Holger and Dellermann, Theresa and Kupfer, Thomas and Lenczyk, Carsten and Roy, Dipak and Sch{\"a}fer, Marius and Schneider, Christoph}, title = {Increasing the Reactivity of Diborenes: Derivatization of NHC- Supported Dithienyldiborenes with Electron-Donor Groups}, series = {Chemistry, A European Journal}, journal = {Chemistry, A European Journal}, doi = {10.1002/chem.201704669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155419}, year = {2017}, abstract = {A series of NHC-supported 1,2-dithienyldiborenes was synthesized from the corresponding (dihalo)thienylborane NHC precursors. NMR and UV-vis spectroscopic data, as well as X-ray crystallographic analyses, were used to assess the electronic and steric influences on the B=B double bond of various NHCs and electron-donating substituents on the thienyl ligands. Crystallographic data showed that the degree of coplanarity of the diborene core and thienyl groups is highly dependent on the sterics of the substituents. Furthermore, any increase in the electron- donating ability of the substituents resulted in the destabilization of the HOMO and greater instability of the resulting diborenes.}, language = {en} } @unpublished{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Claes, Christina and Ewing, William and Krummenacher, Ivo and Lubitz, Katharina and Schneider, Christoph}, title = {Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition}, doi = {10.1002/anie.201602384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142500}, pages = {4}, year = {2016}, abstract = {Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6p-aromatic dibora- benzene compound, a 2 p-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2 p-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6H6 and C4H42+, and homoaromatic C4H5+.}, subject = {Diborane}, language = {en} }