@phdthesis{Neumann2001, author = {Neumann, Arne}, title = {Aktivierung phagozytierender Zellen durch "Advanced Glycation Endproducts" und beta-Amyloid-Implikationen f{\"u}r die Pathogenese der Alzheimer'schen Demenz}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Typisch f{\"u}r die Alzheimer' schen Erkrankung ist die Bildung unl{\"o}slicher Ablagerungen im Gehirn, sogenannter "seniler Plaques". Diese Plaques bestehen im Wesentlichen aus fibrill{\"a}rem beta-Amyloid, das durch Glykierungen ver{\"a}ndert vorliegen kann. Außerdem beinhalten die Plaques, sogenannte AGEs "Advanced Glycation Endproducts", die aus nichtenzymatisch glykierten Proteinen entstehen. Diese AGE-modifizierten Proteine sowie das fibrill{\"a}re beta-Amyloid sind in der Lage Mikrogliazellen zu aktivieren. Die sessilen Gehirnmakrophagen wirken in aktiviertem Zustand neurotoxisch, wobei es verschiedene Hypothesen gibt, wie die Mikrogliazellen zu dem neuronalen Zelltod f{\"u}hren. Um dieses zu untersuchen wurden murine Mikrogliazellen herangezogen, die als Merkmal ihrer Aktivierung auf die Translokation des Transkriptionsfaktors NF-kappa-B in den Zellkern {\"u}berpr{\"u}ft wurden. In der vorliegenden Arbeit wurden die Rahmenbedingungen n{\"a}her untersucht, die zu der AGE vermittelten Mikrogliaaktivierung f{\"u}hren. Es wurde in vitro gezeigt, daß die Mikrogliaaktivierung zun{\"a}chst durch eine hochmolekulare Hyalurons{\"a}ure, wie sie nativ in der extrazellul{\"a}ren Matrix vorliegt, verhindert wird. Im Gegensatz dazu konnte NF-kappa-B in Mikrogliazellen aktiviert werden, die in Gegenwart von Hyalurons{\"a}urefragmenten mit AGE behandelt wurden. In der vorliegenden Arbeit wurde festgestellt, daß die Mikrogliaaktivierbarkeit umgekehrt proportional zu der durchschnittlichen Hyalurons{\"a}uremolek{\"u}lgr{\"o}ße ist. Andere Glykosaminoglykane aus der extrazellul{\"a}ren Matrix, wie D-Glukurons{\"a}ure, N-Azetylglukosamin oder Chondroitin-4-sulfat reduzierten die Aktivierbarkeit der Mikrogliazellen nur geringf{\"u}gig. Sowohl beta-Amyloid, als auch AGEs setzen w{\"a}hrend ihres Entstehungsprozesses reaktive Sauerstoffspezies frei, die Hyalurons{\"a}ure in kleinere Bruchst{\"u}cke zerschneiden k{\"o}nnen. Die Signaltransduktion der AGE-aktivierten Mikrogliazellen wurde mittels unterschiedlicher Inhibitoren gehemmt und die Auswirkung auf die NF-kappa-B Aktivierung untersucht. Hier zeigte sich ein komplexes Netzwerk an aktivierten Signalwegen, so daß kein R{\"u}ckschluß auf einen bestimmten Rezeptor m{\"o}glich war. Daher wurde ein "in vitro Modell" entwickelt, um die ausschlaggebende neurotoxischen Komponenten der Mikrogliareaktion aufzufinden. Darin wurden die Signalkaskaden der aktivierten Mikroglia erneut durch pharmakologische Inhibierung unterbrochen, das zellfreie Medium das von diesen Mikrogliazellen sezerniert wurde, wurde als "konditioniertes Medium" f{\"u}r die Kultur muriner Neuronen eingesetzt. Diese wurden bez{\"u}glich ihrer {\"U}berlebensrate in diesem konditionierten Medium untersucht. Die Hemmung der Transkription oder der Translation in den Mikrogliazellen zeigte keine Reduktion der neurotoxischen Wirkung des konditionierten Mediums. Ebensowenig wirkten Inhibitoren der mitochondrialen Atmungskette, der Radikalquellen Xanthin Oxidase, Lipoxygenase oder Cyclooxygenase. Die Hemmung der NADPH Oxidase reduzierte die Neurotoxizit{\"a}t des konditionierten Mediums auf etwa 30 Prozent. Die NADPH Oxidase ist ein Enzymkomplex, der im Rahmen des "oxidativen bursts" große Mengen Superoxidanionen freisetzt. Um die Bedeutung der NADPH Oxidase Aktivierung f{\"u}r die neurotoxische Wirkung nachzuweisen, wurde eine Untereinheit der NADPH Oxidase, das membranst{\"a}ndige gp91phox in den Mikrogliazellen deaktiviert. Dies f{\"u}hrte dazu, daß diese Zellen kein Superoxid auf die Stimulation mit beta-Amyloid oder AGE hin abgaben, im Gegensatz zu den Mikrogliazellen mit funktioneller NADPH Oxidase. Das konditionierte Medium der NADPH Oxidase defizienten Zellen war nicht mehr neurotoxisch. Die freien Sauerstoffradikale die aufgrund der NADPH Oxidase Aktivierung entstehen, k{\"o}nnen zu einer NF-kappa-B Aktivierung f{\"u}hren. NF-kappa-B wurde erfolgreich in den Mikroglia durch exogenes Wasserstoffperoxid stimuliert, wobei aber keine neurotoxische Wirkung im Modellsystem festgestellt wurde. NF-kappa-B scheint damit nicht f{\"u}r die mikrogliavermittelte Neurotoxizit{\"a}t verantwortlich zu sein, im Gegensatz zu der NADPH Oxidase, deren Aktivit{\"a}t unmittelbar mit der Neurotoxizit{\"a}t korreliert ist.}, subject = {Alzheimer-Krankheit}, language = {de} } @phdthesis{Hayen2001, author = {Hayen, Wiebke}, title = {Determinanten der Tumorzellmigration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180784}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Hyalurons{\"a}ure (HS) ist ein weit verbreitetes Glykosaminoglykan in der Extrazellul{\"a}rmatrix vieler Gewebe und tritt in erh{\"o}hten Konzentrationen in der Umgebung solider Tumore auf. Es ist bekannt, daß HS die Zellmigration vieler Zellarten stimuliert. Im ersten Teil dieser Arbeit wurde die Rolle der HS in der Tumorzellmigration auf der Basis eines dreidimensionalen Fibringel-Systems, in welches Tumorzell-bedeckte Microcarrier eingebettet wurden, untersucht. Ein Vergleich zwischen zwei- und dreidimensionaler Migration unterverschiedenen Bedingungen ergab, daß die dreidimensionale Migration nicht von HS-spezifischen Oberfl{\"a}chenrezeptoren abh{\"a}ngt, sondern haupts{\"a}chlich von der Porosit{\"a}t der Matrix. In zweidimensionalen Systemen war die Migration durch Antik{\"o}rper gegen den HS-Rezeptor CD44 inhibierbar, unter dreidimensionalen Bedingungen jedoch nicht. Zur Bestimmung der strukturellen Eigenschaften der Fibringele wurden spektrometrische Messungen, konfokale Mikroskopie, Kompaktionsmessungen und Fl{\"u}ssigkeitspermeation herangezogen. Eine weitere Lokalisation ergab ein intrazellul{\"a}res Auftreten von HS vorwiegend perinukle{\"a}r mit dem Zytoskelett assoziiert. Ein direkter Einfluß auf die Aktinpolymerisation konnte ausgeschlossen werden. Im zweiten Teil der Arbeit wurde die direktionale Migration von Tumorzellen auf Endothelzellen sowohl in dreidimensionalen Fibringelsystemen als auch unter zweidimensionalen Bedingungen untersucht. Endothelzell-konditioniertes Medium wurde weiter aufgereinigt und es konnten massenspektrometrisch mehrere potentiell chemotaktisch aktive Molek{\"u}le im Medium bestimmt werden.}, subject = {Tumorzelle}, language = {de} } @phdthesis{Torlopp2010, author = {Torlopp, Angela}, title = {Die Rolle von FGF in der fr{\"u}hen Kardiogenese und Proepikardiogenese im H{\"u}hnerembryo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47695}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In dieser Arbeit sollte die Funktion von FGF-Signalen im Herzfeld und in der Entwicklung des Proepikards im H{\"u}hnerembryo untersucht werden. Fibroblasten-Wachstumsfaktoren (FGF) sind eine große Gruppe von Signalmolek{\"u}len und in eine Vielzahl von Entwicklungsprozessen involviert. Das Proepikard (PE), welches sich asymmetrisch auf dem rechten Sinushorn des Sinus venosus entwickelt, bildet die Grundlage des Koronargef{\"a}ßsystems des Herzens. FGF-Liganden (FGF2, FGF10, FGF12) werden insbesondere in den epithelialen Zellen des Proepikards exprimiert, sowie an der sinomyokardialen Basis dieser embryonalen Progenitorpopulation. Die FGF-Rezeptoren (FGFR1, FGFR2, FGFR4) weisen ein {\"a}hnliches Expressionsmuster auf und deren Inhibition, durch spezifische Antagonisten, war der Ausgangspunkt f{\"u}r die funktionelle Analyse der proepikardialen FGF-Signalaktivit{\"a}t. Die Inhibition von FGF-Signalen in vitro f{\"u}hrt zu einem verringerten Wachstum sowie einer erh{\"o}hten Apoptoserate in proepikardialen Explantaten, die unter serumfreien Bedingungen kultiviert wurden. Es konnte gezeigt werden, dass sowohl der Ras/MAPK- als auch der PI3-Kinase-Signalweg, beides Bestandteile der FGF-Signaltransduktion, f{\"u}r das Wachstum und {\"U}berleben proepikardialer Zellen verantwortlich sind. Dagegen sind FGF-Signale nicht in die Etablierung proepikardialer Identit{\"a}t involviert, wie die Analyse der Expression etablierter proepikardialer Markergene wie TBX18, WT1 und TBX5 nach FGF-Inhibition zeigte. Dies konnte gleichfalls durch in vivo-Experimente gezeigt werden, in denen die rechtsseitige Inhibition von FGF zu einem retardierten Proepikardwachstum f{\"u}hrte. Weiterhin konnte gezeigt werden, dass die asymmetrische Apoptose in der sich transient entwickelnden linksseitigen Proepikardanlage auf eine fr{\"u}he differentielle Expression von Apoptosegenen wie Caspase 2 zur{\"u}ckgeht. Diese asymmetrische Expression wird von FGF8 reguliert, wahrscheinlich als Teil eines fr{\"u}hen rechtsseitigen Signalweges, der Apoptose im rechten Sinushorn des kardialen Einflusstraktes verhindert. Im zweiten Teil der Arbeit wurde die Expression der Hyaluronansynthase 2 (HAS2) in Abh{\"a}ngigkeit von FGF in der Herzfeldregion analysiert. Hyaluronansynthasen produzieren Hyalurons{\"a}ure, welches eine essentielle Komponente der extrazellul{\"a}ren Matrix ist. Es wurde in vivo gezeigt, dass die Expression von HAS2 im prim{\"a}ren Herzfeld in gleicher Weise von FGF reguliert wird wie die des kardialen Transkriptionsfaktors NKX2.5. Die Ergebnisse dieser Arbeit verdeutlichen, dass FGF w{\"a}hrend der fr{\"u}hen Entwicklung des Herzens und der Entstehung des Proepikards diverse Funktionen besitzt.}, subject = {Huhn}, language = {de} } @phdthesis{Boeck2018, author = {B{\"o}ck, Thomas}, title = {Multifunctional Hyaluronic Acid / Poly(glycidol) Hydrogels for Cartilage Regeneration Using Mesenchymal Stromal Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Improved treatment options for the degenerative joint disease osteoarthritis (OA) are of major interest, since OA is one of the main sources of disability, pain, and socioeconomic burden worldwide [202]. According to epidemiological data, already 27 million people suffer from OA in the US [23]. Moreover, the WHO expects OA to be the fourth most common cause of disability in 2020 [203], illustrating the need for effective and long-lasting therapy options of severe cartilage defects. Despite numerous clinically available products for the treatment of cartilage defects [62], the development of more cartilage-specific materials is still at the beginning. Hyaluronic acid (HA) is a major component of the cartilaginous extracellular matrix (ECM) and inherently creates a cell-friendly niche by providing cell attachment and migration sites. Furthermore, it is known that the functional groups of HA are well suited for chemical modification. These characteristics render HA an attractive material for hydrogel-based tissue engineering approaches. Poly(glycidol) (PG) as chemical crosslinker basically features similar chemical characteristics as the widely used poly(ethylene glycol) (PEG), but provides additional side groups at each repeating unit that can be further chemically functionalized. With the introduction of PG as multifunctional crosslinker for HA gels, a higher cross-linking density and, accordingly, a greater potential for biomimetic functionalization may be achieved. However, despite the mentioned potential benefits, PG has not been used for cartilage regeneration approaches so far. The initial aim of the study was to set up and optimize a HA-based hydrogel for the chondrogenic differentiation of mesenchymal stromal cells (MSCs), using different amounts and variations of cross-linkers. Therefore, the hydrogel composition was optimized by the utilization of different PEG diacrylate (PEGDA) concentrations to cross-link thiol-modified HA (Glycosil, HA-SH) via Michael addition. We aimed to generate volumestable scaffolds that simultaneously enable a maximum of ECM deposition. Histological and biochemical analysis showed 0.4\% PEGDA as the most suitable concentration for these requirements (Section 5.1.2). In order to evaluate the impact of a differently designed cross-linker on MSC chondrogenesis, HA-SH was cross-linked with PEGTA (0.6\%) and compared to PEGDA (0.4\%) in a next step. Following this, acrylated PG (PG-Acr) as multifunctional cross-linker alternative to acrylated PEG was evaluated. It provides around five times more functional groups when utilized in PG-Acr (0.6\%) HA-SH hydrogels compared to PEGTA (0.6\%) HA-SH hydrogels, thus enabling higher degrees of biomimetic functionalization. Determination of cartilage-specific ECM components showed no substantial differences between both cross-linkers while the deposition of cartilaginous matrix appeared more homogeneous in HA-SH PG-Acr gels. Taken together, we were able to successfully increase the possibilities for biomimetic functionalization in the developed HA-SH hydrogel system by the introduction of PG-Acr as cross-linker without negatively affecting MSC chondrogenesis (Section 5.1.3). The next part of this thesis focused extensively on the biomimetic functionalization of PG-Acr (0.6\%) cross-linked HA-SH hydrogels. Here, either biomimetic peptides or a chondrogenic growth factor were covalently bound into the hydrogels. Interestingly, the incorporation of a N-cadherin mimetic (HAV), a collagen type II binding (KLER), or a cell adhesion-mediating peptide (RGD) yielded no improvement of MSC chondrogenesis. For instance, the covalent binding of 2.5mM HAV changed morphology of cell nuclei and reduced GAG production while the incorporation of 1.0mM RGD impaired collagen production. These findings may be attributed to the already supportive conditions of the employed HA-based hydrogels for chondrogenic differentiation. Most of the previous studies reporting positive peptide effects on chondrogenesis have been carried out in less supportive PEG hydrogels or in significantly stiffer MeHA-based hydrogels [99, 101, 160]. Thus, the incorporation of peptides may be more important under unfavorable conditions while inert gel systems may be useful for studying single peptide effects (Section 5.2.1). The chondrogenic factor transforming growth factor beta 1 (TGF-b1) served as an example for growth factor binding to PG-Acr. The utilization of covalently bound TGF-b1 may thereby help overcome the need for repeated administration of TGF-b1 in in vivo applications, which may be an advantage for potential clinical application. Thus, the effect of covalently incorporated TGF-b1 was compared to the effect of the same amount of TGF-b1 without covalent binding (100nM TGF-b1) on MSC chondrogenesis. It was successfully demonstrated that covalent incorporation of TGF-b1 had a significant positive effect in a dose-dependent manner. Chondrogenesis of MSCs in hydrogels with covalently bound TGF-b1 showed enhanced levels of chondrogenesis compared to hydrogels into which TGF-b1 was merely mixed, as shown by stronger staining for GAGs, total collagen, aggrecan and collagen type II. Biochemical evaluation of GAG and collagen amounts, as well as Western blot analysis confirmed the histological results. Furthermore, the positive effect of covalently bound TGF-b1 was shown by increased expression of chondrogenic marker genes COL2A1, ACAN and SOX9. In summary, covalent growth factor incorporation utilizing PG-Acr as cross-linker demonstrated significant positive effects on chondrogenic differentiation of MSCs (Section 5.2.2). In general, PG-Acr cross-linked HA hydrogels generated by Michael addition represent a versatile hydrogel platform due to their high degree of acrylate functionality. These hydrogels may further offer the opportunity to combine several biological modifications, such as the incorporation of biomimetic peptides together with growth factors, within one cell carrier. A proof-of-principle experiment demonstrated the suitability of pure PG gels for studying single peptide effects. Here, the hydrogels were generated by the utilization of thiol-ene-click reaction. In this setting, without the supportive background of hyaluronic acid, MSCs showed enhanced chondrogenic differentiation in response to the incorporation of 1.0mM HAV. This was demonstrated by staining for GAGs, the cartilage-specific ECM molecules aggrecan and type II collagen, and by increased GAG and total collagen amounts shown by biochemical analysis. Thus, pure PG gels exhibit the potential to study the effects and interplay of peptides and growth factors in a highly modifiable, bioinert hydrogel environment. The last section of the thesis was carried out as part of the EU project HydroZONES that aims to develop and generate zonal constructs. The importance of zonal organization has attracted increased attention in the last years [127, 128], however, it is still underrepresented in tissue engineering approaches so far. Thus, the feasibility of zonal distribution of cells in a scaffold combining two differently composed hydrogels was investigated. A HA-SH(FMZ) containing bottom layer was generated and a pure PG top layer was subsequently cast on top of it, utilizing both times thiol-ene-click reaction. Indeed, stable, hierarchical constructs were generated that allowed encapsulated MSCs to differentiate chondrogenically in both zones as shown by staining for GAGs and collagen type II, and by quantification of GAG amount. Thus, the feasibility of differently composed zonal hydrogels utilizing PG as a main component was successfully demonstrated (Section 5.4). With the first-time utilization and evaluation of PG-Acr as versatile multifunctional cross-linker for the preparation of Michael addition-generated HA-SH hydrogels in the context of cartilage tissue engineering, a highly modifiable HA-based hydrogel system was introduced. It may be used in future studies as an easily applicable and versatile toolbox for the generation of biomimetically functionalized hydrogels for cell-based cartilage regeneration. The introduction of reinforcement structures to enhance mechanical resistance may thereby further increase the potential of this system for clinical applications. Additionally, it was also demonstrated that thiol-ene clickable hydrogels can be used for the generation of cell-laden, pure PG gels or for the generation of more complex, coherent zonal constructs. Furthermore, thiol-ene clickable PG hydrogels have already been further modified and successfully been used in 3D bioprinting experiments [204]. 3D bioprinting, as part of the evolving biofabrication field [205], offers the possibilities to generate complex and hierarchical structures, and to exactly position defined layers, yet at the same time alters the requirements for the utilized hydrogels [159, 206-209]. Since a robust chondrogenesis of MSCs was demonstrated in the thiol-ene clickable hydrogel systems, they may serve as a basis for the development of hydrogels as so called bioinks which may be utilized in more sophisticated biofabrication processes.}, subject = {Hyalurons{\"a}ure}, language = {en} } @phdthesis{SchaefergebStichler2019, author = {Sch{\"a}fer [geb. Stichler], Simone}, title = {Thiol-ene Cross-linked Poly(glycidol) / Hyaluronic Acid Based Hydrogels for 3D Bioprinting}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174713}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The aim of the work was the development of thiol-ene cross-linked hydrogels based on functionalized poly(glycidol)s (PG) and hyaluronic acid (HA) for extrusion based 3D bioprinting. Additionally, the functionalization of the synthesized PG with peptides and the suitability of these polymers for physically cross-linked gels were investigated, in a proof of principle study in order to demonstrate the versatile use of PG polymers in hydrogel development. First, the precursor polymers of the different hydrogel systems were synthesized. For thiol-ene cross-linked hydogels, linear allyl-functionalized PG (P(AGE-co-G)) and three different thiol-(SH-)functionalized polymers, ester-containing PG-SH (PG SHec), ester-free PG-SH (PG-SHef) and HA-SH were synthesized and analysed, The degree of functionalization of these polymers was adjustable. For physically cross-linked hydrogels, peptide-functionalized PG (P(peptide-co-G)), was synthesized through polymer analogue thiol-ene modification of P(AGE-co-G). Subsequently, thiol-ene cross-linked hydrogels were prepared with the synthesized thiol- and allyl-functionalized polymers. Depending on the origin of the used polymers, two different systems were obtained: on the one hand synthetic hydrogels consisting of PG-SHec/ef and P(AGE-co-G) and on the other hand hybrid gels, consisting of HA-SH and P(AGE-co-G). In synthetic gels, the degradability of the gels was determined by the applied PG-SH. The use of PG-SHec resulted in hydrolytically degradable hydrogels, whereas the cross-linking with PG-SHef resulted in non-degradable gels. The physical properties of these different hydrogel systems were determined by swelling, mechanical and diffusion studies and subsequently compared among each other. In swelling studies the differences of degradable and non-degradable synthetic hydrogels as well as the differences of synthetic compared to hybrid hydrogels were demonstrated. Next, the stiffness and the swelling ratios (SR) of the established hydrogel systems were examined in dependency of different parameters, such as incubation time, polymer concentration and UV irradiation. In general, these measurements revealed the same trends for synthetic and hybrid hydrogels: an increased polymer concentration as well as prolonged UV irradiation led to an increased network density. Moreover, it was demonstrated that the incorporation of additional non-bound HMW HA hampered the hydrogel cross-linking resulting in gels with decreased stiffness and increased SR. This effect was strongly dependent on the amount of additional HMW HA. The diffusion of different molecular weight fluorescein isothiocyanate-dextran (FITC-dextran) through hybrid hydrogels (with/without HMW HA) gave information about the mesh size of these gels. The smallest FITC-dextran (4 kDa) completely diffused through both hydrogel systems within the first week, whereas only 55 \% of 40 kDa and 5-10 \% HMW FITC-dextrans (500 kDa and 2 MDa) could diffuse through the networks. The applicability of synthetic and hybrid hydrogels for cartilage regeneration purpose was investigated through by biological examinations. It was proven that both gels support the survival of embedded human mesenchymal stromal cells (hMSCs) (21/28 d in vitro culture), however, the chondrogenic differentiation was significantly improved in hybrid hydrogels compared to synthetic gels. The addition of non-bound HMW HA resulted in a slightly less distinct chondrogenesis. Lastly the printability of the established hydrogel systems was examined. Therefore, the viscoelastic properties of the hydrogel solutions were adjusted by incorporation of non-bound HMW HA. Both systems could be successfully printed with high resolution and high shape fidelity. The introduction of the double printing approach with reinforcing PCL allowed printing of hydrogel solutions with lower viscosities. As a consequence, the amount of additional HMW HA necessary for printing could be reduced allowing successful printing of hybrid hydrogel solutions with embedded cells. It was demonstrated that the integrated cells survived the printing process with high viability measured after 21 d. Moreover, by this reinforcing technique, robust hydrogel-containing constructs were fabricated. In addition to thiol-ene cross-linked hydrogels, hydrogel cross-linking via ionic interactions was investigated with a hybrid hydrogel based on HMW HA and peptide-functionalized PG. Rheological measurements revealed an increase in the viscosity of a 2 wt.\% HMW HA solution by the addition of peptide-functionalized PG. The increase in viscosity could be attributed to the ionic interactions between the positively charge PG and the negatively charge HMW HA. In conclusion, throughout this thesis thiol-ene chemistry and PG were introduced as promising cross-linking reaction and polymer precursor for the field of biofabrication. Furthermore, the differences of hybrid and synthetic hydrogels as well as chemically and physically cross-linked hydrogels were demonstrated. Moreover, the double printing approach was demonstrated to be a promising tool for the fabrication of robust hydrogel-containing constructs. It opens the possibility of printing hydrogels that were not printable yet, due to too low viscosities.}, subject = {Hyalurons{\"a}ure}, language = {en} } @phdthesis{Bernuth2020, author = {Bernuth, Silvia}, title = {Bioaktiv funktionalisierbare Hyalurons{\"a}ure-Polyglycidol-Hydrogele unter Verwendung von ASCs aus dem Fettgewebe zur Rekonstruktion von Weichgewebsdefekten}, doi = {10.25972/OPUS-21424}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In der Plastischen Chirurgie erfordert die Rekonstruktion von {\"a}sthetisch anspruchsvollen Bereichen in vielen F{\"a}llen die Wiederherstellung von subkutanem Fettgewebe. Neben chirurgischen Rekonstruktionen k{\"o}nnte das Tissue Engineering von Fettgewebe einen wertvollen Beitrag leisten. Jedoch bringt es vielschichtige Herausforderungen mit sich und ist zum aktuellen Zeitpunkt nur limitiert m{\"o}glich. Ein Ansatz ist die Schaffung einer Tr{\"a}germatrix zur Besiedelung und Differenzierung von Stammzellen. Auf dieser Basis sollten in der vorliegenden Arbeit zwei Teilbereiche untersucht werden. In dem ersten Teilbereich erfolgten Untersuchungen verschiedener Gewinnungsmethoden von ASCs aus dem subkutanen Fettgewebe bezogen auf ihr Effizienz. Die untersuchten Liposuktionstechniken zeigten eine deutlich h{\"o}here Effizienz gegen{\"u}ber der mechanischen Gewinnungsmethode bezogen auf die gewonnene Zellzahl. In den Viabilit{\"a}tsuntersuchungen zeigte sich eine {\"a}hnliche Tendenz. ASCs aller drei Gewinnungsmethoden proliferierten durchaus gleich gut, jedoch zeigten die histologischen und quantitativen Adipogeneseuntersuchungen tendenziell mehr Lipidbildung bei den Liposuktionstechniken. Das {\"u}bergeordnete Ziel des zweiten Abschnittes dieser Arbeit war es eine Tr{\"a}germatrix auf Hyalurons{\"a}ure-Basis mit dem vielseitig modifizierbarem Crosslinker Polyglycidol zu untersuchen, sie mit mesenchymalen Stammzellen aus dem Fettgewebe zu besiedeln und diese adipogen zu differenzieren. Des Weiteren erfolgten erste Versuche die Hydrogele mit funktionellen Gruppen zu modifizieren um eine Verbesserung der Adh{\"a}sion der Zellen im Hydrogel zu erreichen. Die unmodifizierten Hydrogele waren zu jeder Zeit stabil in ihrer Form und zeigten nach Besiedelung mit ASCs eine gleichm{\"a}ßige Verteilung der Zellen im Gel. Auch ließ sich die Adipogenese histologisch visualisieren und biochemisch best{\"a}tigen. Die inkorporierten Peptide brachten eine peptidabh{\"a}ngige und konzentrationsabh{\"a}ngige Ver{\"a}nderung der Zellverteilung im Hydrogel. Eine Steigerung der Funktionalit{\"a}t der Zellen bezogen auf das {\"U}berleben und die Adipogenese konnte in diesen ersten Versuchen noch nicht gezeigt werden. Generell zeigt sich eine Eignung der hyalurons{\"a}urebasierten mit Polyglycidol-verlinkten Hydrogele f{\"u}r das Tissue Engineering von Fettgewebe. Weitere Untersuchungen bez{\"u}glich der Modifikation der Hydrogele mit adh{\"a}siven und adipogenen funktionellen Gruppen bietet sich daher an und k{\"o}nnte ein fettgewebs{\"a}hnliches Umgebungsmilieu hervorbringen.}, subject = {Hyalurons{\"a}ure}, language = {de} } @phdthesis{Schmidt2021, author = {Schmidt, Stefanie}, title = {Cartilage Tissue Engineering - Comparison of Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells in Agarose and Hyaluronic Acid-Based Hydrogels}, doi = {10.25972/OPUS-25171}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251719}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Articular cartilage damage caused by sports accidents, trauma or gradual wear and tear can lead to degeneration and the development of osteoarthritis because cartilage tissue has only limited capacity for intrinsic healing. Osteoarthritis causes reduction of mobility and chronic pain and is one of the leading causes of disability in the elderly population. Current clinical treatment options can reduce pain and restore mobility for some time, but the formed repair tissue has mostly inferior functionality compared to healthy articular cartilage and does not last long-term. Articular cartilage tissue engineering is a promising approach for the improvement of the quality of cartilage repair tissue and regeneration. In this thesis, a promising new cell type for articular cartilage tissue engineering, the so-called articular cartilage progenitor cell (ACPC), was investigated for the first time in the two different hydrogels agarose and HA-SH/P(AGE-co-G) in comparison to mesenchymal stromal cells (MSCs). In agarose, ACPCs´ and MSCs´ chondrogenic capacity was investigated under normoxic (21 \% oxygen) and hypoxic (2 \% oxygen) conditions in monoculture constructs and in zonally layered co-culture constructs with ACPCs in the upper layer and MSCs in the lower layer. In the newly developed hyaluronic acid (HA)-based hydrogel HA-SH/P(AGE-co-G), chondrogenesis of ACPCs and MSCs was also evaluated in monoculture constructs and in zonally layered co-culture constructs like in agarose hydrogel. Additionally, the contribution of the bioactive molecule hyaluronic acid to chondrogenic gene expression of MSCs was investigated in 2D monolayer, 3D pellet and HA-SH hydrogel culture. It was shown that both ACPCs and MSCs could chondrogenically differentiate in agarose and HA-SH/P(AGE-co-G) hydrogels. In agarose hydrogel, ACPCs produced a more articular cartilage-like tissue than MSCs that contained more glycosaminoglycan (GAG), less type I collagen and only little alkaline phosphatase (ALP) activity. Hypoxic conditions did not increase extracellular matrix (ECM) production of ACPCs and MSCs significantly but improved the quality of the neo-cartilage tissue produced by MSCs. The creation of zonal agarose constructs with ACPCs in the upper layer and MSCs in the lower layer led to an ECM production in zonal hydrogels that lay in general in between the ECM production of non-zonal ACPC and MSC hydrogels. Even though zonal co-culture of ACPCs and MSCs did not increase ECM production, the two cell types influenced each other and, for example, modulated the staining intensities of type II and type I collagen in comparison to non-zonal constructs under normoxic and hypoxic conditions. In HA-SH/P(AGE-co-G) hydrogel, MSCs produced more ECM than ACPCs, but the ECM was limited to the pericellular region for both cell types. Zonal HASH/P(AGE-co-G) hydrogels resulted in a native-like zonal distribution of ECM as MSCs in the lower zone produced more ECM than ACPCs in the upper zone. It appeared that chondrogenesis of ACPCs was supported by hydrogels without biological attachment sites such as agarose, and that chondrogenesis of MSCs benefited from hydrogels with biological cues like HA. As HA is an attractive material for cartilage tissue engineering, and the HA-based hydrogel HA-SH/P(AGE-co-G) appeared to be beneficial for MSC chondrogenic differentiation, the contribution of HA to chondrogenic gene expression of MSCs was investigated. An upregulation of chondrogenic gene expression was found in 2D monolayer and 3D pellet culture of MSCs in response to HA supplementation, while gene expression of osteogenic and adipogenic transcription factors was not upregulated. MSCs, encapsulated in a HA-based hydrogel, showed upregulation of gene expression for chondrogenic, osteogenic and adipogenic differentiation markers as well as for stemness markers. In a 3D bioprinting process, using the HA-based hydrogel, gene expression levels of MSCs mostly did not change. Nevertheless, expression of three tested genes (COL2A1, SOX2, CD168) was downregulated in printed in comparison to cast constructs, underscoring the importance of closely monitoring cellular behaviour during and after the printing process. In summary, it was confirmed that ACPCs are a promising cell source for articular cartilage engineering with advantages over MSCs when they were cultured in a suitable hydrogel like agarose. The performance of the cells was strongly dependent on the hydrogel environment they were cultured in. The different chondrogenic performance of ACPCs and MSCs in agarose and HA-SH/P(AGE-co-G) hydrogels highlighted the importance of choosing suitable hydrogels for the different cell types used in articular cartilage tissue engineering. Hydrogels with high polymer content, such as the investigated HA-SH/P(AGE-co-G) hydrogels, can limit ECM distribution to the pericellular area and should be developed further towards less polymer content, leading to more homogenous ECM distribution of the cultured cells. The influence of HA on chondrogenic gene expression and on the balance between differentiation and maintenance of stemness in MSCs was demonstrated. More studies should be performed in the future to further elucidate the signalling functions of HA and the effects of 3D bioprinting in HA-based hydrogels. Taken together, the results of this thesis expand the knowledge in the area of articular cartilage engineering with regard to the rational combination of cell types and hydrogel materials and open up new possible approaches to the regeneration of articular cartilage tissue.}, subject = {Hyaliner Knorpel}, language = {en} } @phdthesis{Hauptstein2022, author = {Hauptstein, Julia}, title = {Hyaluronic Acid-based Multifunctional Bioinks for 3D Bioprinting of Mesenchymal Stromal Cells for Cartilage Regeneration}, doi = {10.25972/OPUS-26068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260681}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Articular cartilage is a highly specialized tissue which provides a lubricated gliding surface in joints and thereby enables low-friction movement. If damaged once it has a very low intrinsic healing capacity and there is still no treatment in the clinic which can restore healthy cartilage tissue. 3D biofabrication presents a promising perspective in the field by combining healthy cells and bioactive ink materials. Thereby, the composition of the applied bioink is crucial for defect restoration, as it needs to have the physical properties for the fabrication process and also suitable chemical cues to provide a supportive environment for embedded cells. In the last years, ink compositions with high polymer contents and crosslink densities were frequently used to provide 3D printability and construct stability. But these dense polymeric networks were often associated with restricted bioactivity and impaired cell processes like differentiation and the distribution of newly produced extracellular matrix (ECM), which is especially important in the field of cartilage engineering. Therefore, the aim of this thesis was the development of hyaluronic acid (HA)-based bioinks with a reduced polymer content which are 3D printable and additionally facilitate chondrogenic differentiation of mesenchymal stromal cells (MSCs) and the homogeneous distribution of newly produced ECM. Starting from not-printable hydrogels with high polymer contents and restricted bioactivity, distinct stepwise improvements were achieved regarding stand-alone 3D printability as well as MSC differentiation and homogeneous ECM distribution. All newly developed inks in this thesis made a valuable contribution in the field of cartilage regeneration and represent promising approaches for potential clinical applications. The underlying mechanisms and established ink design criteria can further be applied to other biofabricated tissues, emphasizing their importance also in a more general research setting.}, subject = {Hyalurons{\"a}ure}, language = {en} } @phdthesis{Franke2023, author = {Franke, Christian}, title = {Gelenkknorpelintegration im Tissue Engineering: Untersuchung von Polyethylenglykol- und Hyalurons{\"a}ure-Komponenten f{\"u}r ein Adh{\"a}sivum und Etablierung eines biomechanischen Versuchsmodells}, doi = {10.25972/OPUS-32337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323375}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Gelenkknorpel besitzt aufgrund seiner avaskul{\"a}ren Natur und der fehlenden mitotischen Aktivit{\"a}t der Chondrozyten bei Sch{\"a}den kaum Potential zur Selbstheilung. Traumatische L{\"a}sionen und degenerative Ver{\"a}nderungen m{\"u}nden im Krankheitsbild der Osteoarthrose, welches mit dem Untergang des Gelenkknorpels einhergeht. Ein neuerer Therapieansatz ist das Tissue Engineering von Gelenkknorpel, wobei jedoch die laterale Integration der Implantate mit dem nativen Knorpelgewebe problematisch bleibt. Ein Adh{\"a}sivum kann neben einer ad{\"a}quaten Sofortadh{\"a}sion die Langzeitintegration f{\"o}rdern. In dieser Arbeit wurden verschiedene Polyethylenglykol (PEG)-basierte Zweikomponentenkleber, ausgehend vom kommerziell erh{\"a}ltlichen Gewebekleber CoSeal™, auf ihre Eignung f{\"u}r Gelenkknorpel untersucht. Dabei wurde Hyalurons{\"a}ure (HA) als physiologischer Bestandteil von Gelenkknorpel in thiolierter Form (HA-SH) als Komponente verwendet und auf seine prointegrativen Eigenschaften untersucht. Der den CoSeal™-Komponenten entsprechende 4-Succinimidyl-Glutarat/4-Thiol-PEG (4SG/4T-PEG)-Kleber hatte sich trotz seiner hohen Sofortadh{\"a}sionskraft auch nach der Substitution des 4T-PEG mit HA-SH als zu schnell in fl{\"u}ssiger Umgebung degradierend gezeigt, um eine suffiziente Langzeitintegration zu erreichen. Durch die Verwendung der langsamer degradierenden funktionellen 4-Succinimidyl-Carbonat-PEG (4C-PEG)-Komponente konnte die Langzeitadh{\"a}sionskraft in Kombination mit 4-Amin-PEG (4A-PEG) durch die stabilere Amid-Bindung zum einen und in Kombination mit HA-SH zum anderen signifikant gesteigert werden. Immunhistochemisch konnten bei beiden HA-haltigen Klebern Zeichen von Knorpelintegration nachgewiesen werden, w{\"a}hrend der 4C/4A-PEG-Kleber keine Integrationszeichen aufwies. Im 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromid (MTT)-Assay war bei keinem Adh{\"a}sivum eine zytotoxische Wirkung zu erkennen. Insgesamt bieten die untersuchten PEG-basierten Adh{\"a}siva im Vergleich zu den weitverbreiteten Fibrinklebern eine deutlich h{\"o}here Sofortadh{\"a}sion, welche vergleichbar mit glutaraldehydbasierten Klebern ist. Allerdings k{\"o}nnen die initialen adh{\"a}siven Kr{\"a}fte, trotz histologisch nachweisbaren Integrationszeichen bei Inkorporation von HA, nicht langfristig aufrechterhalten werden, so dass Fibrinkleber weiterhin die Spitzengruppe in Sachen Langzeitadh{\"a}sion bilden. Da PEG eine ausgezeichnete Biokompatibilit{\"a}t, einfache Anwendbarkeit und zahlreiche weitere chemische Anpassungsm{\"o}glichkeiten zur Feinabstimmung der Degradationseigenschaften bietet, ist in Zukunft ein erfolgreicher Einsatz auch im Bereich von Gelenkknorpel denkbar. F{\"u}r die experimentelle Untersuchung von Adh{\"a}siva und Gelenkknorpel werden biomechanische Versuchsmodelle ben{\"o}tigt. Der Tensile-Test des Sandwich-Modells konnte im Rahmen dieser Arbeit erfolgreich etabliert und ein Protokoll festgelegt werden. In einem vergleichenden Versuch mit dem Push-Out-Test des Disc-Ring-Modells, welches als Referenzmodell dient, konnte in Bezug auf die Reproduzierbarkeit und Qualit{\"a}t der Messergebnisse die Gleichwertigkeit gezeigt werden. Insgesamt bietet er eine gute Alternative zum Push-Out-Test, um weiterf{\"u}hrende Fragestellung, wie z.B. extrinsische Kraftwirkungen auf das Konstrukt, zu untersuchen.}, subject = {Knorpel}, language = {de} }