@phdthesis{JakobRodamer2014, author = {Jakob-Rodamer, Verena}, title = {Development and validation of LC-MS/MS methods to determine PK/PD parameters of anti-infectives}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109215}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In the present thesis the development and validation of bioanalytical LC-MS/MS methods for the quantification of erythromycin A, erythromycin ethylsuccinate, roxithromycin, clarithromycin, 14 hydroxy clarithromycin, flucloxacillin, piperacillin and moxifloxacin in human plasma and human urine (piperacillin) is introduced. All methods were applied to analyze human plasma and urine samples from clinical trials and therefore, have been validated according to international guidelines. The methods were reliable in these studies and fulfilled all regulatory requirements known at the time of the study conduct. Moreover, the validation data of the macrolides were compared on three different mass spectrometers (API III Plus, API 3000™, API 5000™). The new innovations in the ion source (horizontal versus vertical electrospray), the ionpath (skimmer, QJet) and the diameter of the orifice resulted in better sensitivity and a larger linearity range for the majority of the analytes. Sensitivity was improved up to a factor of 12 (for clarithromycin) between API III Plus to API 3000™ and up to a factor of 8 (for erythromycin and roxithromycin) between API 3000™ and API 5000™, keeping the accuracy and precision data at about the same level. The high sensitivity was a benefit for example for the flucloxacillin study, because concentrations from all subject samples were detectable up to approximately eight half-lives, i.e. no concentrations needed to be reported below the quantification limit. Also the linearity range were extended from two orders of magnitude to up to four orders of magnitude, which increases the likelihood to allow to analyze all samples from a pharmacokinetic study in the same run. This is especially useful if a large concentration range needs to be analysed, for example, if the method shall be applied in an ascending dose study. Then, all low concentrations from the beginning of the study can be determined, as well as all high concentrations, without the need to dilute and analyse single samples repeatedly. The pharmacokinetic data were compared to previously reported literature data and correlated graphically with MIC values of popular microorganisms which might be a starting point for further PK/PD investigations. The PK/PD theory is a very helpful tool for prediction of the efficacy of given drugs against certain micro-organisms. Depending on the pharmacodynamic processes, e. g. the mode of action, three classes of drugs have been identified. In the same way this applies to adverse effects, which need to be minimised by reducing plasma concentrations. These coherences are not well-investigated, yet, and are not discussed further in this thesis. Still, a lot of research has to be done in this interdisciplinary field to minimise uncertainty in single values, like an AUC/MIC. These include: Improve accuracy and precision of bioanalytical methods determining total and free concentration data in biological matrices for calculation of AUC and Cmax These parameters are related to the MIC in pharmacodynamic considerations. Since the determination of the MIC often underlies significant variations and also differences between microbiological laboratories, the determination of concentrations of anti-infectives is particular important, being achievable by scientific exact techniques. Finally, from the volume of distribution of antibiotics can be used to derive information about intracellular concentrations and effectivity of antiinfectives.}, subject = {Antimikrobieller Wirkstoff}, language = {en} }