@phdthesis{Strauss2018, author = {Strauß, Micha Johannes}, title = {Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen f{\"u}r AlGaAs Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159024}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Erforschung von Quantenpunkten mit ihren quantisierten, atom{\"a}hnlichen Zust{\"a}nden, bietet eine Vielzahl von M{\"o}glichkeiten auf dem Weg zum Quantencomputer und f{\"u}r Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden k{\"o}nnen. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass G{\"u}ten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und T{\"u}rmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor f{\"u}r diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatort{\"u}rmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der T{\"u}rmchen. Dar{\"u}ber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatort{\"u}rmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es m{\"o}glich sein, ein Resonatort{\"u}rmchen direkt {\"u}ber dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung f{\"u}r die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der H{\"a}lfte des angestrebten T{\"u}rmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel {\"u}ber den Quantenpunkten, Resonatort{\"u}rmchen zielgenau auf die Quantenpunkte prozessiert werden k{\"o}nnen. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. F{\"u}r ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe m{\"o}glichst defektfrei {\"u}berwachsen werden konnte, die Struktur des Lochgitters aber nicht zerst{\"o}rt wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum n{\"a}chsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung f{\"u}r eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 \% der Quantenpunkte innerhalb von 50 nm und 60 \% innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte M{\"o}glichkeit, diese in Halbleiterresonatoren einbinden zu k{\"o}nnen, machen sie auch interessant f{\"u}r die Anwendung im Telekommunikationsbereich. Um f{\"u}r Glasfasernetze Anwendung zu finden, muss jedoch die Wellenl{\"a}nge auf den Bereich von 1300 nm oder 1550 nm {\"u}bertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenl{\"a}nge von 1300nm. Eine fu ̈r andere Bauteile sowie f{\"u}r Laserdioden bereits h{\"a}ufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von {\"u}ber 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenl{\"a}ngen gr{\"o}ßer 1300 nm emittieren. So ist es nun m{\"o}glich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenl{\"a}nge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen f{\"u}r 1300nm zu realisieren.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Semmel2010, author = {Semmel, Julia Birgit}, title = {Herstellung von Quantenkaskadenlaserstrukturen auf InP und Entwicklung alternativer Bauteilkonzepte f{\"u}r den monomodigen Betrieb}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Das zentrale Thema der vorliegenden Arbeit ist die Konzeptionierung und Charakterisierung verschiedener innovativer Bauteildesigns zur Optimierung der spektralen sowie elektro-optischen Eigenschaften von Quantenkaskadenlasern. Die Quantenkaskadenlaserschichten, die diesen Konzepten zu Grunde liegen wurden im Rahmen dieser Arbeit mittels Molekularstrahlepitaxie hergestellt und optimiert. Diese Optimierung machte auch die Realisierung von Dauerstrichbetrieb m{\"o}glich. Dazu werden zun{\"a}chst die grundlegenden Eigenschaften von den in dieser Arbeit verwendeten III-V-Halbleitern sowie des InP-Materialsystems erl{\"a}utert. F{\"u}r diese Arbeit ist dabei die Kombination der beiden tern{\"a}ren Verbindungshalbleiter InGaAs und InAlAs in einer Halbleiterheterostruktur von zentraler Bedeutung, aus denen die aktive Zone der hier vorgestellten Quantenkaskadenlaser besteht. Basierend auf dem zweiten Kapitel wird dann im dritten Kapitel auf das Zusammenspiel der einzelnen konkurrierenden strahlenden und nicht strahlenden Streuprozesse in einer Quantenkaskadenlaserstruktur eingegangen. Dabei wird die prinzipielle Funktionsweise eines solchen komplexen Systems an Hand eines 3-Quantenfilm-Designs erl{\"a}utert. Das vierte Kapitel besch{\"a}ftigt sich mit der Herstellung und Grundcharakterisierung der Laserstrukturen. Dabei wird kurz das Konzept der Molekularstrahlepitaxie erkl{\"a}rt sowie der Aufbau der verwendeten Anlage beschrieben. Da ein Betrieb der Bauteile im Dauerstrichbetrieb deren Anwendbarkeit in vielen Bereichen verbessert, wird im f{\"u}nften Kapitel an Hand eines ausgew{\"a}hlten Strukturdesigns der Weg bis hin zur Realisierung des Dauerstrichbetriebs beschrieben. Des Weiteren wird auf einen besonderen Prozess zur Verbesserung der W{\"a}rmeleitf{\"a}higkeit der fertigen Bauteile eingegangen. Dieser sogenannte Doppelkanal-Stegwellenleiter-Prozess zeichnet sich dadurch aus, dass der entstehende Lasersteg seitlich durch zwei nasschemisch ge{\"a}tzte Gr{\"a}ben begrenzt wird.Die letzten drei Kapitel besch{\"a}ftigen sich mit verschiedenen Bauteilkonzepten zur Optimierung der spektralen sowie elektro-optischen Eigenschaften der Quantenkaskadenlaser. In Kapitel sechs werden dabei Mikrolaser mit tiefge{\"a}tzten Bragg-Spiegeln zur Realisierung von monomodigem Betrieb vorgestellt. Im folgenden Kapitel werden Laser mit aktiven gekoppelten Ringresonatoren vorgestellt. Der gekoppelte Ring funktioniert dabei als Filter nach dem Vernier-Prinzip und erm{\"o}glicht so monomodigen Betrieb. Im letzten Kapitel stehen schließlich Quantenkaskadenlaser mit trapezf{\"o}rmigem Verst{\"a}rkungsbereich im Mittelpunkt. Ziel dieses Teils der vorliegenden Arbeit war es die Ausgangsleistung der Bauteile zu erh{\"o}hen und dabei gleichzeitig die Fernfeldeigenschaften zu verbessern.}, subject = {Quantenkaskadenlaser}, language = {de} } @phdthesis{Schwertberger2005, author = {Schwertberger, Ruth}, title = {Epitaxie von InAs-Quanten-Dash-Strukturen auf InP und ihre Anwendung in Telekommunikationslasern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14609}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Herstellung und Charakterisierung von niedrigdimensionalen Strukturen f{\"u}r den Einsatz als aktive Schicht in InP-Halbleiterlasern. Quantenpunktstrukturen als Lasermedium weisen gegen{\"u}ber herk{\"o}mmlichen Quantenfilmlasern einige Vorteile auf, wie beispielsweise geringe Schwellenstromdichten, breites Verst{\"a}rkungsspektrum und geringe Temperatursensitivit{\"a}t der Emissionswellenl{\"a}nge. Ziel dieser Arbeit ist es, diese speziellen Vorteile, die im GaAs-System gr{\"o}ßtenteils nachgewiesen sind, auch auf das InP-System zu {\"u}bertragen, da dieses f{\"u}r die Telekommunikationswellenl{\"a}nge 1.55 µm pr{\"a}destiniert ist. Die vorgestellten Strukturen wurden mittels einer Gasquellen-Molekularstrahlepitaxie-Anlage unter Verwendung der alternativen Gruppe-V-Precursor Terti{\"a}rbutylphosphin (TBP) und -arsin (TBA) hergestellt. Die Bildung der Quantenpunktstrukturen wurde zun{\"a}chst an Hand von Teststrukturen optimiert. Scheidet man InAs auf einem InP(100)-Substrat ab, so bilden sich - anders als auf GaAs - keine runden InAs-Quantenpunkte, sondern unregelm{\"a}ßige, strichf{\"o}rmige Strukturen mit einer klaren Vorzugsorientierung, sogenannte Dashes. Verschiedene Wachstumsparameter, wie die Menge an deponiertem InAs, der Strukturaufbau oder der Wachstumsmodus, lassen eine Beeinflussung der Emissionseigenschaften zu, die mittels Photolumineszenz (PL)-Spektroskopie untersucht wurden. So kann die Emissionswellenl{\"a}nge der Dashes sehr genau und {\"u}ber einen großen Bereich zwischen 1.2 und 2.0 µm {\"u}ber die nominelle Dicke der Dash-Schicht festgelegt werden. Dieser Zusammenhang l{\"a}sst sich auch nutzen, um durch die Kombination von Schichten unterschiedlicher Dash-Gr{\"o}ße eine extreme Verbreiterung des Verst{\"a}rkungsspektrums auf {\"u}ber 300 nm zu erzielen. Neben der Hauptanwendung als Telekommunikationslaser sind auch Einsatzm{\"o}glichkeiten in der Gassensorik f{\"u}r einen Wellenl{\"a}ngenbereich zwischen 1.8 und 2.0 µm denkbar. Dieser ist neben der Verwendung extrem dicker Schichten durch das Prinzip des migrationsunterst{\"u}tzten Wachstums (engl. migration enhanced epitaxy) oder durch die Einbettung der Dash-Schichten in einen InGaAs-Quantenfilm ("Dash-in-a-Well"-Struktur) realisierbar. Letzteres zieht eine starke Rotverschiebung um etwa 130 meV bei gleichzeitiger schmaler und intensiver Emission nach sich. Da die Dashes einige sehr interessante Eigenschaften aufweisen, wurde ihre Eignung als aktive Schicht eines InP-Halbleiterlasers untersucht. Zun{\"a}chst wurden der genaue Schichtaufbau, speziell die Fernfeldcharakteristik, und die Wachstumsparameter optimiert. Ebenso wurde der Effekt eines nachtr{\"a}glichen Ausheilschritts diskutiert. Da die speziellen Vorteile der Quanten-Dash(QD)-Strukturen nur Relevanz haben, wenn auch ihre Grunddaten einem Quantenfilmlaser (QW-Laser) auf InP ebenb{\"u}rtig sind, wurde besonderer Wert auf einen entsprechenden Vergleich gelegt. Dabei zeigt sich, dass die Effizienzen ebenso wie die Absorption der QD-Laser nahezu identisch mit QW-Lasern sind. Die Schwellenstromdichten weisen eine st{\"a}rkere Abh{\"a}ngigkeit von der L{\"a}nge des Laserresonators auf, was dazu f{\"u}hrt, dass ab einer L{\"a}nge von 1.2 mm QD-Laser geringere Werte zeigen. Die Temperaturabh{\"a}ngigkeit der Schwellenstromdichte, die sich in der charakteristischen Temperatur T0 {\"a}ussert, zeigt dagegen f{\"u}r QD-Laser eine st{\"a}rkere Sensitivit{\"a}t mit maximalen T0-Werten von knapp {\"u}ber 100 K. Betrachtet man das Emissionsspektrum der QD-Laser, so f{\"a}llt die starke Blauverschiebung mit abnehmender Bauteill{\"a}nge auf. Gleichzeitig zeigen diese Laser im Vergleich zu QW-Lasern eine deutlich gr{\"o}ßere Temperaturstabilit{\"a}t der Emissionswellenl{\"a}nge. Beide Eigenschaften haben ihre Ursache in der flachen Form des Verst{\"a}rkungsspektrums. Zus{\"a}tzlich wurden einige der an Hand der Teststrukturen gezeigten Dash-Eigenschaften auch an Laserstrukturen nachgewiesen. So l{\"a}sst sich durch Variation der Dash-Schichtdicke von 5 auf 7.5 ML eine Verschiebung der Emissionswellenl{\"a}nge um bis zu 230 nm realisieren, wobei dieses Verfahren damit noch nicht ausgereizt ist. Ebenso wurde auch ein {\"U}berlapp aus sechs jeweils verschieden dicken Dash-Schichten in eine Laserstruktur eingebaut. An Hand von Subschwellspektren wurde eine Verst{\"a}rkungsbreite von etwa 220 nm nachgewiesen, die eine Abdeckung des gesamten Telekommunikationsbandes durch eine einzige Laserstruktur erlauben w{\"u}rde. Aus Quanten-Dash-Material prozessierte Stegwellenleiter (RWG)-Laser weisen sehr vielversprechende Daten mit hohen Ausgangsleistungen bis 15 mW pro Facette und niedrigen Schwellenstr{\"o}men auf. Damit schafft diese Arbeit die Grundvoraussetzungen, um InAs-Quanten-Dashes als echte Alternative zu herk{\"o}mmlichen Quantenfilmen in InP-Halbleiterlasern zu etablieren. Besonders das breite Verst{\"a}rkungsspektrum und die hohe Temperaturstabilit{\"a}t der Emissionswellenl{\"a}nge zeichnen dieses Material aus.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Schumacher2003, author = {Schumacher, Claus}, title = {Herstellung und Charakterisierung von Nanostrukturen auf der Basis von II-VI-Materialien mittels der Schattenmaskentechnologie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8754}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Warum eigentlich Schattenmasken als neues alternatives Verfahren zur lateralen Strukturierung? Alle bislang {\"u}blichen Verfahren zur Herstellung lateral begrenzter Halbleiter-Kristalle strukturieren die zuvor epitaktisch fl{\"a}chig aufgewachsenen Schichten nachtr{\"a}glich. Hierdurch k{\"o}nnen Probleme entstehen. Etwa erzeugen nach einem nasschemischen {\"A}tzprozess freistehende Quantentr{\"o}ge im Randbereich Oberfl{\"a}chenzust{\"a}nde, die zu nicht strahlender Rekombination f{\"u}hren k{\"o}nnen und daher die Lichtausbeute reduzieren. Der Prozess des erneuten {\"U}berwachsens solcher nachtr{\"a}glich ge{\"a}tzter Strukturen ist bislang noch nicht reproduzierbar. Weitere alternative Techniken, wie das Wachstum selbstorganisierter Quantenpunkte oder das it in-situ Spalten, bieten entweder noch keine befriedigende Kontrollm{\"o}glichkeit der Strukturgr{\"o}ße oder sind f{\"u}r eine industrielle Anwendung nur wenig praktikabel. Deshalb richtete sich der Blick auf das aus der III-V-Epitaxie bekannte Schattenmasken-Verfahren zur Herstellung makroskopischer sogenannter ,,nipi-Strukturen''. Diese zeigen den interessanten Effekt, dass sich die durch eine Schattenmaske wachsende Struktur in Wachstumsrichtung w{\"a}hrend des Wachstums von selbst zuspitzt. Die Gr{\"o}ße der Masken-Apertur kann dadurch in einer Gr{\"o}ßenordnung bleiben, wie sie durch ein ultra-violett optisch lithographisches Verfahren hergestellt werden kann. Durch die Maske w{\"a}chst dennoch, unterst{\"u}tzt von Schatten- und Selbstorganisationseffekten, ein Halbleiter-Kristall, der an seiner Spitze die Ausdehnung einer Nanostruktur hat. Im Rahmen dieser Arbeit gelang es erstmals mittels der Schattenmaskentechnologie eine ZnSe-Draht-Struktur herzustellen, deren Ausdehnung an der Spitze nur noch 25~nm betr{\"a}gt. Da dieses Verfahren erstmals zur Herstellung von II-VI-Halbleiter-Schichten etabliert wurde, konnte auf keinerlei Vorarbeiten zur{\"u}ckgegriffen werden. Vor der Herstellung geeigneter Schattenmasken mussten zun{\"a}chst geeignete Belichtungs-Masken f{\"u}r die optische Lithographie entworfen werden, bevor die {\"A}tztechniken zur Herstellung der Schattenmasken selbst optimiert werden konnten. Am Ende der Schattenmaskenentwicklung stand ein Verfahren zur Pr{\"a}paration einer verl{\"a}sslichen Startoberfl{\"a}che f{\"u}r die anschließende II-VI-Epitaxie, ohne die ein reproduzierbares Wachstum durch die Schattenmaske nicht m{\"o}glich ist. Nachdem die technologische Seite abgearbeitet war, mussten anhand geeigneter Epitaxieexperimente die Einfl{\"u}sse durch die ge{\"a}nderten Wachstumsbedingungen erforscht werden. Insbesondere spielen beim Wachstum durch Schattenmasken Oberfl{\"a}cheneffekte wie Diffusion oder die Orientierung der Masken-Apertur bzgl. der Kristallrichtung eine wesentliche Rolle. F{\"u}r die in dieser Arbeit verwendete Geometrie des Wachstums (Gruppe-II- und Gruppe-VI-Spezies werden aus bzgl. der Masken-Apertur spiegelbildlichen Raumwinkelbereichen angeboten) wurde herausgefunden, dass die Masken{\"o}ffnung entlang der [1-10]-Kristallrichtung orientiert sein sollte. Entlang dieser Richtung sind die Se-Dimere einer Se-reich rekonstruierten Oberfl{\"a}che orientiert und somit verl{\"a}uft die Vorzugsdiffusionsrichtung senkrecht zum Draht. Hierdurch k{\"o}nnen diffusionsgest{\"u}tzt sch{\"a}rfer definierte Flanken des Drahtes wachsen, als bei einer um 90° gedrehten Geometrie. Eigentlich soll nicht nur eine bin{\"a}re Drahtstruktur entstehen, sondern es soll zum Beispiel ein ZnCdSe-Quantentrog in einen Draht aus einem geeigneten Barriere-Material eingebettet werden. Bei diesen Versuchen stellte sich anhand von Tieftemperatur-PL- und charakteristischen R{\"o}ntgenphotonen-Spektren heraus, dass Cadmium in einem epitaktisch gewachsenen Draht st{\"a}rker als andere Spezies auf der Wachstumsoberfl{\"a}che diffundiert. Eine kontrollierte Deposition eines ZnCdSe-Quantentroges ist nicht m{\"o}glich. Um Diffusionseffekte zu vermeiden kann statt eines tern{\"a}ren Troges ein bin{\"a}rer in eine nun quatern{\"a}re Barriere eingebettet werden. Dieser Ansatz wird bereits in einer parallel zu dieser Arbeit begonnenen Dissertation erfolgreich verfolgt. Bei der Etablierung eines neuen Verfahrens zur Herstellung von Halbleiter-Kristallen m{\"u}ssen auch Aussagen {\"u}ber die strukturellen Eigenschaften der gewachsenen Strukturen getroffen werden. Hierzu wurden die mittels eines ,,Lift-Off''-Prozesses nun freistehenden Drahtstrukturen einer R{\"o}ntgenstrukturanalyse unterzogen. Die reziproken Gitterkarten zeigen bei senkrechter Orientierung der Beugungsebene relativ zum Draht, dass der Schichtreflex nicht auf der Relaxationsgeraden liegt. Bei einer rein plastischen Relaxation eines Halbleiter-Kristalls m{\"u}sste dies jedoch f{\"u}r beide Orientierungen der Beugungsebene (senkrecht und parallel zum Draht) der Fall sein. Der Schichtreflex ist in Richtung des Substratreflexes verschoben. Der Netzebenenabstand ist somit also verkleinert. Eine m{\"o}gliche Erkl{\"a}rung hierf{\"u}r ist die zylinderf{\"o}rmige ,,Verbiegung'' der Atomebenen im Realraum und somit der Netzebenen im reziproken Raum. Die {\"U}berlegungen f{\"u}hren somit auf eine zus{\"a}tzlich elastische anstelle auschließlich plastischen Relaxation des Kristalls. Um eine solche These erh{\"a}rten zu k{\"o}nnen wurde auf der Basis der aus den REM- und AFM-Bildern ausgewerteten Geometrie der Drahtstrukturen ein atomares Modell eines verspannten Kristalls erstellt. Mittels eines Monte-Carlo-Algorithmus' kann dieses Modell seine eingepr{\"a}gte Verspannungsenergie elastisch abbauen. Die Fouriertransformierte des Realraumbildes des elastisch relaxierten Drahtes l{\"a}sst sich direkt mit den reziproken Gitterkarten vergleichen. Mittels dieser Simulation konnte die vertikale Verschiebung des Schichtreflexes unmittelbar den zylindrisch ,,verbogenen'' Kristallebenen zugeordnet werden. Ferner erm{\"o}glichen die Simulationen erstmalig die qualitative Interpretation der Beugungsmessungen an den Schattenmasken selbst. Die im Rahmen der Dissertation von H.R.~Ress vorgenommenen Beugungsmessungen an den Schattenmasken zeigen neben der vertikalen Verschiebung des AlGaAs-Schichtreflexes charakteristische diffuse Streifen um den Schichtreflex, die bislang unverstanden waren. Die Simulationen zeigen, dass diese Streifen erst bei der elastischen Relaxation des Drahtes durch die konvexe W{\"o}lbung der Drahtflanke entstehen. Diese diffusen Streifen lassen sich in den in dieser Arbeit gewachsenen Dr{\"a}hten aus II-VI-Halbleitern nicht unmittelbar nachweisen. Da die Schattenmasken bedingt durch das Herstellungsverfahren eine Rauigkeit der Schattenkanten von bis zu 150~nm aufweisen sind auch die Flanken der durch die Masken gewachsenen Strukturen stark aufgeraut. Deshalb streuen die den Draht begrenzenden Fassetten nicht koh{\"a}rent und bieten entsprechend keine definierte Abbruchbedingung der Fouriertransformation.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} } @phdthesis{Schott2004, author = {Schott, Gisela Marieluise}, title = {Molekularstrahlepitaxie und Charakterisierung von (Ga,Mn)As Halbleiterschichten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13470}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In der Spintronik bestehen große Bem{\"u}hungen Halbleiter und ferromagnetische Materialien zu kombinieren, um die Vorteile der hoch spezialisierten Mikroelektronik mit denen der modernen magnetischen Speichertechnologie zu verbinden. In vielen Bereichen der Elektronik wird bereits der III-V Halbleiter GaAs eingesetzt und ferromagnetisches (Ga,Mn)As k{\"o}nnte in die vorhandenen optischen und elektronischen Bauteile integriert werden. Deshalb ist eine intensive Erforschung der kristallinen Qualit{\"a}t, der elektrischen und magnetischen Eigenschaften von (Ga,Mn)As-Legierungsschichten von besonderem Interesse. Wegen der niedrigen L{\"o}slichkeit der Mangan-Atome in GaAs, muss (Ga,Mn)As außerhalb des thermodynamischen Gleichgewichtes mit Niedertemperatur-Molekularstrahl-Epitaxie hergestellt werden, um eine ausreichend hohe Konzentration an magnetischen Ionen zu erreichen. Dieses Niedertemperatur-Wachstum von Galliumarseniden verursacht Schwierigkeiten, da unerw{\"u}nschte Defekte eingebaut werden k{\"o}nnen. Die Art der Defekte und die Anzahl ist abh{\"a}ngig von den Wachstumsparametern. Vor allem das {\"u}bersch{\"u}ssige Arsen beeinflusst neben dem Mangan-Gehalt die Gitterkonstante und f{\"u}hrt zu einer starken elektrischen und magnetischen Kompensation des (Ga,Mn)As Materials. Abh{\"a}ngig von den Wachstumsparametern wurden Eichkurven zur Kalibrierung des Mangan-Gehaltes aus R{\"o}ntgenbeugungsmessungen, d. h. aus der (Ga,Mn)As-Gitterkonstanten bestimmt. Um ein besseres Verst{\"a}ndnis {\"u}ber die Einfl{\"u}sse der Wachstumsparameter neben dem Mangan-Gehalt auf die Gitterkonstante zu bekommen, wurden Probenserien gewachsen und mit R{\"o}ntgenbeugung und Sekund{\"a}rionen-Massenspektroskopie untersucht. Es wurde festgestellt, dass der Mangan-Gehalt, unabh{\"a}ngig von den Wachstumsparametern, allein vom Mangan-Fluss bestimmt wird. Die Gitterkonstante hingegen zeigte eine Abh{\"a}ngigkeit von den Wachstumsparametern, d. h. von dem eingebauten {\"u}bersch{\"u}ssigen Arsen in das (Ga,Mn)As-Gitter. Im weiteren wurden temperaturabh{\"a}ngige laterale Leitf{\"a}higkeitsmessungen an verschiedenen (Ga,Mn)As-Einzelschichten durchgef{\"u}hrt. Es ergab sich eine Abh{\"a}ngigkeit nicht nur von dem Mangan-Gehalt, sondern auch von den Wachstumsparametern. Neben den Leitf{\"a}higkeitsmessungen wurden mit Kapazit{\"a}ts-Messungen die Ladungstr{\"a}gerkonzentrationen an verschiedenen (Ga,Mn)As-Schichten bestimmt. Es konnten Wachstumsbedingungen gefunden werden, bei der mit einem Mangan-Gehalt von 6\% eine Ladungstr{\"a}gerkonzentration von 2 · 10^(21) cm^(-3) erreicht wurde. Diese Schichten konnten reproduzierbar mit einer Curie-Temperatur von 70 K bei einer Schichtdicke von 70 nm hergestellt werden. Mit ex-situ Tempern konnte die Curie-Temperatur auf 140 K erh{\"o}ht werden. Neben (Ga,Mn)As-Einzelschichten wurden auch verschiedene (GaAs/MnAs)- {\"U}bergitterstrukturen gewachsen und mit R{\"o}ntgenbeugung charakterisiert. Ziel was es, {\"U}bergitter herzustellen mit einem hohen mittleren Mangan-Gehalt, indem die GaAs-Schichten m{\"o}glichst d{\"u}nn und die MnAs-Submonolagen m{\"o}glichst dick gewachsen wurden. D{\"u}nnere GaAs-Schichten als 10 ML Dicke f{\"u}hrten unabh{\"a}ngig von der Dicke der MnAs-Submonolage und den Wachstumsparametern zu polykristallinem Wachstum. Die dickste MnAs-Submonolage, die in einer {\"U}bergitterstruktur erreicht wurde, betrug 0.38 ML. {\"U}bergitterstrukturen mit nominell sehr hohem Mangan-Gehalt zeigen eine reduzierte Intensit{\"a}t der {\"U}bergitterreflexe, was auf eine Diffusion der Mangan-Atome hindeutet. Der experimentelle Wert der Curie-Temperatur von (Ga,Mn)As scheint durch die starke Kompensation des Materials limitiert zu sein. Theoretische Berechnungen auf der Grundlage des ladungstr{\"a}gerinduzierten Ferromagnetismus besagen eine Erh{\"o}hung der Curie-Temperatur mit Zunahme der Mangan-Atome auf Gallium-Gitterpl{\"a}tzen und der L{\"o}cherkonzentration proportional [Mn_Ga] · p^(1/3). Zun{\"a}chst wurden LT-GaAs:C-Schichten mit den Wachstumsbedingungen der LT-(Ga,Mn)As-Schichten gewachsen, um bei diesen Wachstumsbedingungen die elektrische Aktivierung der Kohlenstoffatome zu bestimmen. Es konnte eine L{\"o}cherkonzentration von 5 · 10^19 cm^(-3) verwirklicht werden. Aufgrund der erfolgreichen p-Dotierung von LT-GaAs:C wurden (Ga,Mn)As-Einzelschichten zus{\"a}tzlich mit Kohlenstoff p-dotiert. Abh{\"a}ngig von den Wachstumsbedingungen konnte eine Erh{\"o}hung der Ladungstr{\"a}gerkonzentration im Vergleich zu den (Ga,Mn)As-Schichten erreicht werden. Trotzdem ergaben magnetische Messungen f{\"u}r alle (Ga,Mn)As:C-Schichten eine Abnahme der Curie-Temperatur. Der Einfluss der Kohlenstoff-Dotierung auf die Gitterkonstante, die elektrische Leitf{\"a}higkeit und die Magnetisierung ließ auf einen ver{\"a}nderten Einbau der Mangan-Atome verursacht durch die Kohlenstoff-Dotierung schließen.}, subject = {Galliumarsenid}, language = {de} } @phdthesis{Maier2017, author = {Maier, Sebastian}, title = {Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152972}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie L{\"o}sungen f{\"u}r aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abh{\"o}rsichere Kommunikationsprotokolle und k{\"o}nnte, mit der Realisierung von Quantenrepeatern, auch {\"u}ber große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) k{\"o}nnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu l{\"o}sen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik gen{\"u}gen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu k{\"o}nnen. In halbleiterbasierten Ans{\"a}tzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten f{\"u}r diese Experimente etabliert. Halbleiterquantenpunkte weisen große {\"A}hnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich {\"u}berdies als exzellente Emitter f{\"u}r einzelne und ununterscheidbare Photonen aus. Außerdem k{\"o}nnen mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So k{\"o}nnen station{\"a}re Quantenbits (Qubits) in Form von Elektronenspinzust{\"a}nden gespeichert werden und mittels Spin-Photon-Verschr{\"a}nkung weit entfernte station{\"a}re Qubits {\"u}ber fliegende photonische Qubits verschr{\"a}nkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften f{\"u}r Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis f{\"u}r das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie erm{\"o}glicht h{\"o}chste kristalline Qualit{\"a}ten und bietet die M{\"o}glichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erh{\"o}ht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verst{\"a}rkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. F{\"u}r die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind f{\"u}r Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration f{\"u}r Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Koh{\"a}renzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavit{\"a}ten weisen gr{\"o}ßere Werte f{\"u}r die Spindephasierungszeit auf als Mikro- und Nanot{\"u}rmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle f{\"u}r einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensit{\"a}t und optische Qualit{\"a}t mit Halbwertsbreiten nahe der nat{\"u}rlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42\% f{\"u}r reine Einzelphotonenemission bestimmt und {\"u}bersteigt damit die, f{\"u}r eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33\%) deutlich. Als Grund hierf{\"u}r konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavit{\"a}ten einerseits als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtb{\"u}ndelung verbessern. In weiterf{\"u}hrenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschr{\"a}nkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein f{\"u}r halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es m{\"o}glich, die komplette Tomographie eines verschr{\"a}nkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. {\"U}berdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei r{\"a}umlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein f{\"u}r Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen f{\"u}r optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerst{\"o}rungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein k{\"u}rzlich ver{\"o}ffentlichtes theoretisches Konzept k{\"o}nnte hierzu einen eleganten Weg er{\"o}ffnen: Hierbei wird die spinabh{\"a}ngige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgen{\"u}tzt. So k{\"o}nnte die Spin-Information zerst{\"o}rungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits {\"u}ber gr{\"o}ßere Distanzen erm{\"o}glicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abh{\"a}ngig von der G{\"u}te des Mikroresonators, {\"u}ber mehrere μm ausdehnen kann. Dies und weitere m{\"o}gliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems w{\"u}nschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universit{\"a}t Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavit{\"a}t mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualit{\"a}t und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer N{\"a}he zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: F{\"u}r die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualit{\"a}t ist eine skalierbare technologische Produktionsplattform w{\"u}nschenswert. Dazu m{\"u}ssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden k{\"o}nnen. Basierend auf zweidimensionalen, regelm{\"a}ßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip f{\"u}r die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit ge{\"a}tzten Nanol{\"o}chern, welche als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erh{\"o}hte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenl{\"a}nge erreicht werden.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Loeffler2008, author = {L{\"o}ffler, Andreas}, title = {Selbstorganisiertes Wachstum von (Ga)InAs/GaAs-Quantenpunkten und Entwicklung von Mikroresonatoren h{\"o}chster G{\"u}te f{\"u}r Experimente zur starken Exziton-Photon-Kopplung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Als erster Schritt wurde der dreidimensionale optische Einschluss der Mikroresonatoren verbessert. Eine h{\"o}here G{\"u}te der Strukturen konnte vor allem durch Weiterentwicklung des Herstellungsprozesses erzielt werden. Der {\"A}tzprozess der T{\"u}rmchen wurde so optimiert, um m{\"o}glichst glatte und senkrechte Seitenw{\"a}nde der Resonatoren zu erreichen. Dies reduziert Streu- und Beugungsverluste an den Seitenw{\"a}nden der Mikroresonatoren und verbessert deren optischen Einschluss. Des Weiteren wurde der epitaktische Schichtaufbau der Resonatoren sowie die Wachstumsparameter der einzelnen Halbleiterschichten optimiert. Somit konnte der Q-Faktor der Resonatoren zum Beispiel durch die Verwendung von Spiegeln mit einer h{\"o}heren Reflektivit{\"a}t und einem angepassten V/III-Verh{\"a}ltnis bei den verschiedenen Epitaxieschichten weiter erh{\"o}ht werden. F{\"u}r einen aktiven Mikroresonator mit 26 (30) Spiegelpaaren im oberen (unteren) DBR und einem Durchmesser von 4 µm wurden somit Rekordwerte f{\"u}r den Q-Faktor von ca. 90000 erreicht. Parallel hierzu wurden Analysen zum Wachstum von selbstorganisierten GaInAs-Quantenpunkten auf GaAs-Substraten angestellt. Hierbei war sowohl die Entstehung der dreidimensionalen Wachstumsinseln als auch deren optische Eigenschaften Gegenstand der Untersuchungen. Die morphologischen Eigenschaften der Quantenpunkte wurde mittels Transmissions- und Rasterelektronenmikroskopie analysiert, womit die optischen Eigenschaften durch Photolumineszenz- und Photoreflexionsmessungen untersucht wurden. Die optischen und vor allem die geometrischen Eigenschaften der selbstorganisiert gewachsenen GaInAs-Quantenpunkte konnten entscheidend verbessert werden. Durch die Verwendung von einer gering verspannten Nukleationsschicht mit einem Indiumgehalt von 30 \% konnte die Fl{\"a}chendichte der Quantenpunkte auf 6 - 9 x 10^9 cm^-2 verringert und ihre geometrischen Abmessungen auf typische L{\"a}ngen von 50 - 100 nm und Breiten von ca. 30 nm erh{\"o}ht werden. Durch den reduzierten Indiumgehalt wird die Gitterfehlanpassung zwischen den Quantenpunkten und der umgebenden Matrix verkleinert. Die verringerte Verspannung beim Quantenpunktwachstum f{\"u}hrt zu einer erh{\"o}hten Migrationsl{\"a}nge der abgeschiedenen Atome auf der Oberfl{\"a}che, was wiederum zur Bildung von gr{\"o}ßeren Quantenpunkten mit geringerer Fl{\"a}chendichte f{\"u}hrt. Schließlich wurden die gewonnenen Erkenntnisse {\"u}ber das MBE-Wachstum von Mikroresonatoren, ihre Prozessierung und das selbstorganisierte Inselwachstum von GaInAs auf GaAs als Basis f{\"u}r die Herstellung weiterer Proben verwendet. Es wurden nun beide Bereiche miteinander verkn{\"u}pft und gering verspannte GaInAs-Quantenpunkte in die Mikroresonatoren eingewachsen. Die hohen G{\"u}ten der realisierten Mikrokavit{\"a}ten in Kombination mit Quantenpunkten mit vergr{\"o}ßerten Abmessungen und geringen Dichten machen diese Strukturen zu idealen Kandidaten f{\"u}r die Grundlagenforschung im Bereich der Quantenelektrodynamik. Als H{\"o}hepunkt erm{\"o}glichten diese Strukturen zum ersten Mal den Nachweis einer starken Wechselwirkung zwischen Licht und Materie in einem Halbleiter. F{\"u}r den Fall der gering verspannten vergr{\"o}ßerten Quantenpunkte im Regime der starken Kopplung konnte eine Vakuum-Rabi-Aufspaltung von ca. 140 µeV zwischen der Resonatormode und dem Quantenpunkt-Exziton beobachtet werden. Durch die verbesserten G{\"u}ten der Kavit{\"a}ten konnte das Regime der starken Wechselwirkung ebenfalls f{\"u}r kleinere Quantenpunkte erreicht werden. Eine Rabi-Aufspaltung von ca. 60 µeV wurde zum Beispiel f{\"u}r kreisrunde GaInAs-Quantenpunkte mit einem Indiumgehalt von 43 \% und Durchmessern zwischen 20 und 25 nm gemessen. Das Regime der starken Kopplung erm{\"o}glicht es weiterhin, R{\"u}ckschl{\"u}sse auf die Oszillatorst{\"a}rke der eingewachsenen Quantenpunkte zu ziehen. So konnte zum Beispiel f{\"u}r die vergr{\"o}ßerten Quantenpunktstrukturen eine Oszillatorst{\"a}rke von ca. 40 - 50 abgesch{\"a}tzt werden. Dagegen weisen die leicht verkleinerten Quantenpunkte mit einem Indiumgehalt von 43 \% nur eine Oszillatorst{\"a}rke von ca. 15 - 20 auf. Des Weiteren wurden f{\"u}r einen sp{\"a}teren elektrischen Betrieb der Bauteile dotierte Mikroresonatoren hergestellt. Die hohen G{\"u}ten der dotierten T{\"u}rmchen erm{\"o}glichten ebenso die Beobachtung von klaren quantenelektrodynamischen Effekten im elektrischen Betrieb. Die untersuchten elektrisch gepumpten Mikroresonatoren mit kleinen GaInAs-Quantenpunkten in der aktiven Schicht operierten im Regime der schwachen Kopplung und zeigten einen deutlichen Purcell-Effekt mit einem Purcell-Faktor von ca. 10 im Resonanzfall. Durch den Einsatz von vergr{\"o}ßerten GaInAs-Quantenpunkten konnte ebenfalls im elektrischen Betrieb das Regime der starken Wechselwirkung mit einer Rabi-Aufspaltung von 85 µeV erreicht werden.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Lermer2013, author = {Lermer, Matthias}, title = {Wachstum und Charakterisierung von Quantenpunkt-Mikrot{\"u}rmchen mit adiabatischer Modenanpassung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Verschiedene Konzepte zur Realisierung einer geeigneten Umgebung f{\"u}r Licht- Materie-Wechselwirkung konkurrieren um Anerkennung und eine st{\"a}ndige Optimierung der Systemparameter findet statt. Das Konzept von Mikrot{\"u}rmchen scheint pr{\"a}destiniert, da es viele anwendungsfreundliche Eigenschaften in sich vereint. Allerdings stellt die drastische Abnahme des Q Faktors f{\"u}r kleiner werdende Durchmesser d einen wesentlichen Limitierungsfaktor dieser Strukturen dar. F{\"u}r viele Anwendungen resultiert daraus ein Kompromiss aus hohem Q Faktor und kleinem Modenvolumen der Strukturen, wodurch das volle Potential des Resonatorsystems nicht ausgesch{\"o}pft werden kann. Ziel dieser Arbeit war es, die drastische Abnahme des Q Faktors von Mikrot{\"u}rmchen mit Durchmessern um 1μm aufzuheben und dadurch Resonatoren mit d < 1μm f{\"u}r ausgepr{\"a}gte Licht-Materie-Wechselwirkung herzustellen. Dazu wurde erstmalig beabsichtigt eine Modenanpassung in Mikrot{\"u}rmchen vorgenommen. Mittels Molekularstrahlepitaxie konnte eine {\"U}bergangsregion, bestehend aus drei Segmenten, in diese Strukturen implementiert und so ein adiabatischer Moden{\"u}bergang zwischen der aktiven Mittelschicht und den Spiegelbereichen vorgenommen werden. Der positive Einfluss dadurch ergab sich in einer signifikanten Verbesserung des gemessenen Q Faktors f{\"u}r Durchmesser unter 1μm. F{\"u}r d = 0.85μm konnte ein Q Faktor von 14 400 bestimmt werden. Dies stellt damit den h{\"o}chsten je gemessenen Wert f{\"u}r Mikrot{\"u}rmchen im Submikrometerbereich dar. Dadurch wird ein Bereich mit Modenvolumina < 3 kubischen Wellenl{\"a}ngen erschlossen und ausgepr{\"a}gte Wechselwirkungseffekte im Mikrot{\"u}rmchensystem sind zu erwarten. Starke Quantenpunkt-Licht-Kopplung konnte in diesen Strukturen nachgewiesen werden. Die h{\"o}chste Vakuum-Rabiaufspaltung betrug 85μeV und die Visibilit{\"a}t wurde zu 0.41 bestimmt. Im Zuge der weiteren Optimierung der Systemparameter f{\"u}r die starke Kopplung wurde ein ex-situ Ausheilschritt auf die verwendete Quantenpunktsorte angewendet. In magnetooptischen Untersuchungen konnte damit eine Verdopplung der mittleren Oszillatorst{\"a}rke auf einen Wert von 12 abgesch{\"a}tzt werden. Weiter konnte in adiabatischen Mikrot{\"u}rmchen {\"u}ber einen großen Durchmesserbereich von 2.25 bis 0.95μm eindeutiger Laserbetrieb des Quantenpunktensembles nachgewiesen werden. Dabei konnte eine kontinuierliche Reduzierung der Laserschwelle von {\"u}ber zwei Gr{\"o}ßenordnungen f{\"u}r kleiner werdende Durchmesser beobachtet werden. F{\"u}r Durchmesser � < 1.6μm betrug der Beta-Faktor der Mikrolaser in etwa 0.5. Sie zeigten damit beinahe schwellenloses Verhalten. Zuletzt wurde der elektrische Betrieb von adiabatischen Mikrot{\"u}rmchen gezeigt. Daf{\"u}r wurde eine dotierte Struktur mit adiabatischem Design hergestellt. Im Vergleich zur undotierten Struktur fielen die gemessenen Q Faktoren in etwa um 5 000 geringer aus. Die spektralen Eigenschaften sowohl des Resonators als auch einzelner Quantenpunktlinien zeigten vernachl{\"a}ssigbare Abh{\"a}ngigkeit der Anregungsart (optisch oder elektrisch) und zeugen von einem erfolgreichen Konzept zum elektrischen Betrieb der Bauteile. Zeitaufgel{\"o}ste Messungen erlaubten die Beobachtung von interessanten Dynamiken der Rekombination von Ladungstr{\"a}gern in den Proben. Als Ursache daf{\"u}r wurde ein hohes intrinsisches Feld, welches auf Grund des Designs der Schichtstruktur entsteht, identifiziert. Weiter zeigte sich, dass sich das interne Feld durch Anregungsart und extern angelegte Spannungen manipulieren l{\"a}sst.}, subject = {Molekularstrahlepitaxie}, language = {de} } @phdthesis{Langer2020, author = {Langer, Fabian}, title = {Wachstum und Charakterisierung von 1,0 eV GaInNAs-Halbleitern f{\"u}r die Anwendung in Mehrfachsolarzellen}, doi = {10.25972/OPUS-20088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200881}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit wurden GaInP/GaAs/GaInNAs 3J-Mehrfachsolarzellen in einem MBE/MOVPE-Hybridprozess hergestellt und untersucht. Der verwendete Hybridprozess, bei dem nur die GaInNAs-Teilsolarzelle mittels MBE hergestellt wird, kombiniert diese beiden Technologien und setzt sie entsprechend ihrer jeweiligen Vorteile ein. Die gezeigten Ergebnisse best{\"a}tigen grunds{\"a}tzlich die Machbarkeit des Hybridprozesses, denn eine Degradation des mittels MBE hergestellten GaInNAs-Materials durch die Atmosph{\"a}re im MOVPE-Reaktor konnte nicht festgestellt werden. Dieses Resultat wurde von im Hybridprozess hergestellten 3J-Mehrfachsolarzellen, die GaInNAs-Teilsolarzellen enthalten, bekr{\"a}ftigt. Die offene Klemmspannung einer gezeigten Solarzelle erreichte bereits 2,59 V (AM1.5d) bzw. 2,48 V (AM0) und liegt damit jeweils {\"u}ber einer als Referenz hergestellten 2J-Mehrfachsolarzelle ohne GaInNAs. Die mittlere interne Quanteneffizienz der enthaltenen GaInNAs-Teilsolarzelle liegt bei 79 \%. Die Berechnungen auf Grundlage dieser Effizienz unter Beleuchtung mit AM1.5d und unter Beleuchtung mit AM0 zeigten, dass nicht die enthaltene GaInNAs-Teilsolarzelle Strom limitierend wirkt, sondern die mittels MOVPE gewachsene GaInP-Teilsolarzelle. Die experimentell bestimmte Kurzschlussstromdichte der hergestellten Mehrfachsolarzelle ist wegen dieser Limitierung etwas geringer als die der 2J-Referenzsolarzelle. Der MOVPE-{\"U}berwachsvorgang bietet zwar noch weiteres Verbesserungspotential, aber es ist naheliegend, dass der Anwachsvorgang auf dem MBE-Material soweit optimiert werden kann, dass die aufgewachsenen GaInP- und GaAs-Schichten frei von Degradation bleiben. Damit bietet der Hybridprozess perspektivisch das Potential g{\"u}nstigere Produktionskosten in der Epitaxie von Mehrfachsolarzellen mit verd{\"u}nnten Nitriden zu erreichen als es ausschließlich mittels MBE m{\"o}glich ist. Im Vorfeld zur Herstellung der 3J-Mehrfachsolarzellen wurden umfassende Optimierungsarbeiten des MBE-Prozesses zur Herstellung der GaInNAs-Teilsolarzelle durchgef{\"u}hrt. So wurde insbesondere festgestellt, dass das As/III-Verh{\"a}ltnis w{\"a}hrend dem Wachstum einen entscheidenden Einfluss auf die elektrisch aktive Dotierung des GaInNAs-Materials besitzt. Die elektrisch aktive Dotierung wiederum beeinflusst sehr stark die Ausdehnung der Raumladungszone in den als p-i-n-Struktur hergestellten GaInNAs-Solarzellen und hat damit einen direkten Einfluss auf deren Stromerzeugung. In der Tendenz zeigte sich eine Zunahme der Stromerzeugung der GaInNAs-Teilsolarzellen bei einer gleichzeitigen Abnahme ihrer offenen Klemmspannung, sobald das As/III-Verh{\"a}ltnis w{\"a}hrend des Wachstums reduziert wurde. Durch eine sehr exakte Kalibration des As/III-Verh{\"a}ltnisses konnte ein bestm{\"o}glicher Kompromiss zwischen offener Klemmspannung und Stromerzeugung gefunden werden. Eine gezeigte GaInNAs-Einfachsolarzelle erreichte eine mittlere interne Quanteneffizienz von 88 \% und eine offene Klemmspannung von 341 mV (AM1.5d) bzw. 351 mV (AM0). Berechnungen auf Grundlage der Quanteneffizienz ergaben, dass diese Solarzelle integriert in eine 3J-Mehrfachsolarzelle unter dem Beleuchtungsspektrum AM1.5g eine Stromdichte von 14,2 mA/cm^2 und unter AM0 von 17,6 mA/cm^2 erzeugen w{\"u}rde. Diese Stromdichten sind so hoch, dass diese GaInNAs-Solarzelle die Stromproduktion der GaInP- und GaAs-Teilsolarzellen in einer g{\"a}ngigen Mehrfachsolarzelle erreicht und keine Ladungstr{\"a}gerverluste auftreten w{\"u}rden. Aufgrund ihrer h{\"o}heren offenen Klemmspannung gegen{\"u}ber einer Ge-Teilsolarzelle bietet diese GaInNAs-Teilsolarzelle das Potential die Effizienz der Mehrfachsolarzelle zu steigern. Messungen der Dotierkonzentration in der GaInNAs-Schicht dieser Solarzelle ergaben extrem geringe Werte im Bereich von 1x10^14 1/cm^3 bis 1x10^15 1/cm^3 (p-Leitung). In Erg{\"a}nzung zu den Optimierungen des As/III-Verh{\"a}ltnisses konnte gezeigt werden, dass sich ein {\"U}bergang von p- zu n-Leitung im GaInNAs mit der Verringerung des As/III-Verh{\"a}ltnisses erzeugen l{\"a}sst. Nahe des {\"U}bergangsbereiches wurden sehr geringe Dotierungen erreicht, die sich durch eine hohe Stromproduktion aufgrund der Ausbildung einer extrem breiten Verarmungszone gezeigt haben. Durch eine reduzierte offene Klemmspannung der bei relativ geringen As/III-Verh{\"a}ltnissen hergestellten Solarzellen mit n-leitendem GaInNAs konnte auf das Vorhandensein von elektrisch aktiven Defekten geschlossen werden. Generell konnten die gemessenen elektrisch aktiven Dotierkonzentrationen im Bereich von {\"u}blicherweise 10^16 1/cm^3 mit hoher Wahrscheinlichkeit auf elektrisch aktive Kristalldefekte im GaInNAs zur{\"u}ckgef{\"u}hrt werden. Eine Kontamination des Materials mit Kohlenstoffatomen in dieser Gr{\"o}ßenordnung wurde ausgeschlossen.}, subject = {Mehrfach-Solarzelle}, language = {de} } @phdthesis{Knebl2019, author = {Knebl, Georg}, title = {Epitaktisches Wachstum und Transportuntersuchung topologisch isolierender Materialien: GaSb/InAs Doppelquantenfilme und Bi\(_2\)Se\(_3\) Nanostrukturen}, doi = {10.25972/OPUS-19147}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191471}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Topologische Isolatoren geh{\"o}ren zu einer Klasse von Materialien, an deren Realisation im Rahmen der zweiten quantenmechanischen Revolution gearbeitet wird. Einerseits sind zahlreiche Fragestellungen zu diesen Materialen und deren Nutzbarmachung noch nicht beantwortet, andererseits treiben vielversprechende Anwendungen im Feld der Quantencomputer und Spintronik die L{\"o}sung dieser Fragen voran. Topologische Rand- bzw. Oberfl{\"a}chenzust{\"a}nde wurden f{\"u}r unterschiedlichste Materialien und Strukturen theoretisch vorhergesagt, so auch f{\"u}r GaSb/InAs Doppelquantenfilme und Bi2Se3. Trotz intensiver Forschungsarbeiten und großer Fortschritte bed{\"u}rfen viele Prozesse v. a. im Bereich der Probenherstellung und Verarbeitung noch der Optimierung. Die vorliegende Arbeit pr{\"a}sentiert Ergebnisse zur Molekularstahlepitaxie, zur Probenfertigung sowie zu elektro-optisch modulierter Transportuntersuchung von GaSb/InAs Doppelquantenfilmen und der epitaktischen Fertigung von Bi2Se3 Nanostrukturen. Im ersten Teil dieser Arbeit werden die Parameter zur Molekularstrahlepitaxie sowie die Anpassung der Probenfertigung von GaSb/InAs Doppelquantenfilmen an material- und untersuchungsbedingte Notwendigkeiten beschrieben. Dieser verbesserte Prozess erm{\"o}glicht die Fertigung quantitativ vergleichbarer Probenserien. Anschließend werden Ergebnisse f{\"u}r Strukturen mit variabler InAs Schichtdicke unter elektrostatischer Kontrolle mit einem Frontgate pr{\"a}sentiert. Auch mit verbessertem Prozess zeigten sich Leckstr{\"o}me zum Substrat. Diese erschweren eine elektrostatische Kontrolle {\"u}ber Backgates. Die erstmals durch optische Anregung pr{\"a}sentierte Manipulation der Ladungstr{\"a}gerart sowie des Phasenzustandes in GaSb/InAs Doppelquantenfilmen bietet eine Alternative zu problembehafteten elektrostatisch betriebenen Gates. Im zweiten Teil wird die epitaktische Herstellung von Bi2Se3 Nanostrukturen gezeigt. Mit dem Ziel, Vorteile aus dem erh{\"o}hten Oberfl{\"a}che-zu-Volumen Verh{\"a}ltnis zu ziehen, wurden im Rahmen dieser Arbeit erstmals Bi2Se3 Nanodr{\"a}hte und -flocken mittels Molekularstrahlepitaxie f{\"u}r die Verwendung als topologischer Isolator hergestellt. Ein Quantensprung - Kapitel 1 f{\"u}hrt {\"u}ber die umgangssprachliche Wortbedeutung des Quantensprungs und des damit verbundenen Modells der Quantenmechanik in das Thema. Die Anwendung dieses Modells auf Quanten-Ensembles und dessen technische Realisation wird heute als erste Quantenmechanische Revolution bezeichnet und ist aus unserem Alltag nicht mehr wegzudenken. Im Rahmen der zweiten Quantenmechanischen Revolution soll nun die Anwendung auf einzelne Zust{\"a}nde realisiert und technisch nutzbar gemacht werden. Hierbei sind topologische Isolatoren ein vielversprechender Baustein. Es werden das Konzept des topologischen Isolators sowie die Eigenschaften der beiden in dieser Arbeit betrachteten Systeme beschrieben: GaSb/InAs Doppelquantenfilme und Bi2Se3 Nanostrukturen. GaSb/InAs Doppelquantenfilme Kapitel 2 beschreibt die notwendigen physikalischen und technischen Grundlagen. Ausgehend von der Entdeckung des Hall-Effekts 1879 werden die Quanten-Hall-Effekte eingef{\"u}hrt. Quanten-Spin-Hall-Isolatoren oder allgemeiner topologische Isolatoren sind Materialien mit einem isolierenden Inneren, weisen an der Oberfl{\"a}che aber topologisch gesch{\"u}tzte Zust{\"a}nde auf. Doppelquantenfilme aus GaSb/InAs, die in AlSb gebettet werden, weisen - abh{\"a}ngig vom Aufbau der Heterostruktur - eine typische invertierte Bandstruktur auf und sind ein vielversprechender Kandidat f{\"u}r die Nutzbarmachung der topologischen Isolatoren. GaSb, InAs und AlSb geh{\"o}ren zur 6,1 {\AA}ngstr{\"o}m-Familie, welche f{\"u}r ihre opto-elektronischen Eigenschaften bekannt ist und h{\"a}ufig verwendet wird. Die Eigenschaften sowie die technologischen Grundlagen der epitaktischen Fertigung von Heterostrukturen aus den Materialien der 6,1 {\AA}ngstr{\"o}m-Familie mittels Molekularstrahlepitaxie werden besprochen. Abschließend folgen die Charakterisierungs- und Messmethoden. Ein {\"U}berblick {\"u}ber die Literatur zu GaSb/InAs Doppelquantenfilmen in Bezug auf topologische Isolatoren rundet dieses Kapitel ab. Zu Beginn dieser Arbeit stellten Kurzschlusskan{\"a}le eine Herausforderung f{\"u}r die Detektion der topologischen Randkan{\"a}le dar. Kapitel 3 behandelt L{\"o}sungsans{\"a}tze hierf{\"u}r und beschreibt die Verbesserung der Herstellung von GaSb/InAs Doppelquantenfilm-Strukturen mit Blick auf die zuk{\"u}nftige Realisation topologischer Randkan{\"a}le. In Abschnitt 3.1 werden numerische Simulationen pr{\"a}sentiert, die sich mit der Inversion der elektronischen Niveaus in Abh{\"a}ngigkeit der GaSb und InAs Schichtdicken dGaSb und dInAs besch{\"a}ftigen. Ein geeigneter Schichtaufbau f{\"u}r Strukturen mit invertierter Bandordnung liegt im Parameterraum von 8 nm ≾ dInAs ≾ 12 nm und 8 nm ≾ dGaSb ≾ 10 nm. Abschnitt 3.2 beschreibt die epitaktische Herstellung von GaSb/InAs Doppelquantenfilmen mittels Molekularstrahlepitaxie. Die Fertigung eines GaSb Quasisubstrats auf ein GaAs Substrat wird pr{\"a}sentiert und anschließend der Wechsel auf native GaSb Substrate mit einer reduzierten Defektdichte sowie reproduzierbar hoher Probenqualit{\"a}t begr{\"u}ndet. Ein Wechseln von bin{\"a}rem AlSb auf gitterangepasstes AlAsSb erlaubt die Verwendung dickerer Barrieren. Versuche, eine hinl{\"a}ngliche Isolation des Backgates durch das Einbringen einer dickeren unteren Barriere zu erreichen, werden in diesem Abschnitt diskutiert. In Abschnitt 3.3 wird die Optimierung der Probenprozessierung gezeigt. Die Kombination zweier angepasster {\"A}tzprozesse - eines trockenchemischen und eines sukzessive folgenden nasschemischen Schrittes - liefert zusammen mit der Entfernung von Oberfl{\"a}chenoxiden reproduzierbar gute Ergebnisse. Ein materialselektiver {\"A}tzprozess mit darauffolgender direkter Kontaktierung des InAs Quantenfilmes liefert gute Kontaktwiderst{\"a}nde, ohne Kurzschlusskan{\"a}le zu erzeugen. Abschnitt 3.4 gibt einen kompakten {\"U}berblick, {\"u}ber den im weiteren Verlauf der Arbeit verwendeten „best practice" Prozess. Mit diesem verbesserten Prozess wurden Proben mit variabler InAs Schichtdicke gefertigt und bei 4,2 K auf ihre Transporteigenschaften hin untersucht. Dies ist in Kapitel 4 pr{\"a}sentiert und diskutiert. Abschnitt 4.1 beschreibt die Serie aus drei Proben mit GaSb/InAs Doppelquantenfilm in AlSb Matrix mit einer variablen InAs Schichtdicke. Die InAs Schichtdicke wurde {\"u}ber numerische Simulationen so gew{\"a}hlt, dass je eine Probe im trivialen Regime, eine im invertierten Regime und eine am {\"U}bergang liegt. Gezeigt werden in Kapitel 4.2 Magnetotransportmessungen f{\"u}r konstante Frontgatespannungen sowie Messungen mit konstantem Magnetfeld gegen die Frontgatespannung. Die Messungen best{\"a}tigen eine Fertigung quantitativ vergleichbarer Proben, zeigen aber auch, dass keine der Proben im topologischen Regime liegt. Hierf{\"u}r kommen mehrere Ursachen in Betracht: Eine {\"U}bersch{\"a}tzung der Hybridisierung durch die numerische Simulation, zu geringe InAs Schichtdicken in der Fertigung oder ein asymmetrisches Verschieben mit nur einem Gate (Kapitel 4.3). Zur Reduktion der Volumenleitf{\"a}higkeit wurden Al-haltigen Schichten am GaSb/InAs {\"U}bergang eingebracht. Die erwartete Widerstandssteigerung konnte in ersten Versuchen nicht gezeigt werde. Die in Kapitel 5 gezeigte optische Manipulation des dominanten Ladungstr{\"a}gertyps der InAs/GaSb-Doppelquantent{\"o}pfe gibt eine zus{\"a}tzliche Kontrollm{\"o}glichkeit im Phasendiagramm. Optische Anregung erm{\"o}glicht den Wechsel der Majorit{\"a}tsladungstr{\"a}ger von Elektronen zu L{\"o}chern. Dabei wird ein Regime durchlaufen, in dem beide Ladungstr{\"a}ger koexistieren. Dies weist stark auf eine Elektron-Loch-Hybridisierung mit nichttrivialer topologischer Phase hin. Dabei spielen zwei unterschiedliche physikalische Prozesse eine Rolle, die analog eines Frontgates bzw. eines Backgates wirken. Der Frontgate Effekt beruht auf der negativ persistenten Photoleitf{\"a}higkeit, der Backgate Effekt fußt auf der Akkumulation von Elektronen auf der Substratseite. Das hier gezeigte optisch kontrollierte Verschieben der Zust{\"a}nde belegt die Realisation von opto-elektronischem Schalten zwischen unterschiedlichen topologischen Phasen. Dies zeigt die M{\"o}glichkeit einer optischen Kontrolle des Phasendiagramms der topologischen Zust{\"a}nde in GaSb/InAs Doppelquantenfilmen. In Abschnitt 5.1 wird die optische Verstimmung von GaSb/InAs Quantenfilmen gezeigt und erkl{\"a}rt. Sie wird in Abh{\"a}ngigkeit von der Temperatur, der Anregungswellenl{\"a}nge sowie der Anregungsintensit{\"a}t untersucht. Kontrollversuche an Proben mit einem unterschiedlichen Strukturaufbau zeigen, dass das Vorhandensein eines {\"U}bergitters auf der Substratseite der Quantenfilmstruktur essentiell f{\"u}r die Entstehung der Backgate-Wirkung ist (Abschnitt 5.2). Abschließend werden in Abschnitt 5.3 die Erkenntnisse zur optischen Kontrolle zusammengefasst und deren M{\"o}glichkeiten, wie optisch definierte topologischen Phasen-Grenzfl{\"a}chen, diskutiert. Bi2Se3 Nanostrukturen Mit Blick auf die Vorteile eines erh{\"o}hten Oberfl{\"a}che-zu-Volumen Verh{\"a}ltnisses ist die Verwendung von Nanostrukturen f{\"u}r das Anwendungsgebiet der dreidimensionalen topologischen Isolatoren effizient. Mit dem Ziel, diesen Effekt f{\"u}r die Realisation des topologischen Isolators in Bi2Se3 auszunutzen, wurde im Rahmen dieser Arbeit erstmalig das Wachstum von Bi2Se3 Nanodr{\"a}hten und -flocken mit Molekularstrahlepitaxie realisiert. In Kapitel 6 werden technische und physikalische Grundlagen hierzu erl{\"a}utert (Abschnitt 6.1). Ausgehend von einer Einf{\"u}hrung in dreidimensionale topologische Isolatoren werden die Eigenschaften des topologischen Zustandes in Bi2Se3 gezeigt. Darauf folgen die Kristalleigenschaften von Bi2Se3 sowie die Erkl{\"a}rung des epitaktischen Wachstums von Nanostrukturen mit Molekularstrahlepitaxie. In Abschnitt 6.2 schließt sich die Beschreibung der epitaktischen Herstellung an. Die Kristallstruktur wurde mittels hochaufl{\"o}sender R{\"o}ntgendiffraktometrie und Transmissionselektronenmikroskopie als Bi2Se3 identifiziert. Rasterelektronenmikroskopie-Aufnahmen zeigen Nanodr{\"a}hte und Nanoflocken auf mit Gold vorbehandelten bzw. nicht mit Gold vorbehandelten Proben. Der Wachstumsmechanismus f{\"u}r Nanodr{\"a}hte kann nicht zweifelsfrei definiert werden. Das Fehlen von Goldtr{\"o}pfchen an der Drahtspitze legt einen wurzelbasierten Wachstumsmechanismus nahe (Abschnitt 6.3).}, language = {de} }