@phdthesis{Sohns2005, author = {Sohns, Andreas}, title = {Halfsandwich iron complexes with Silanol-functionalized Cyclopentadienyl ligands}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15809}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {...}, subject = {Halbsandwich-Verbindungen}, language = {en} } @phdthesis{Bera2005, author = {Bera, Holger}, title = {Halfsandwich tungsten complexes with a silanol-functionalized cyclopentadienyl ligand : synthesis and reactivity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13778}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Within the studies concerning metallo-silanols, halfsandwich-tungsten complexes have been silanol-functionalized at the cyclopentadienyl ligand. The stability and the condensation behavior have been investigated. Thus, it was shown that these complexes are stable enough for isolation but they are reactiv enough for time-effective condensation reactions with diverse chlorosilanes, chlorostannanes or metalhalogenides. These processes are characterized by an increased reactivity in contrast to metallo-silanols with a direct metal-bonded silanol group and proves that the separation of the silanol group has to be regarded as a successful manipulation. In addition, this modification allows a wide variation of the ligand sphere of the metal which was shown by H/Cl exchange, methylation, silylation or phosphine substitution. These changes evoke a small but significant influence on the silanol group. For example leads an introduced phosphine to an enhanced stability of the silanol function. A further separation of the silanol group from the metal by an additional alkylidene spacer leads to the complete lost of the stabilizing effect of the metal fragment and generates silanols which show a condensation behavior very similar to those of ordinary organosilanols.}, subject = {Wolframkomplexe}, language = {en} } @phdthesis{Schumacher2002, author = {Schumacher, Dirk}, title = {Eisenfragment-substituierte Silanole, Silylamine und Heterosiloxane von Aluminium, Gallium und Indium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4897}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {A. Eisenfragment-substituierte Heterosiloxane von Aluminium, Gallium und Indium Die Umsetzung der Ferrio-silanole 5a-c mit Trimethylaluminium, Triisobutylaluminium, Trimethylgallium bzw. Trimethylindium liefert unter Alkaneliminierung die Ferrio-siloxyalane, -gallane bzw. -indane 7a-d, 8a,b und 9a,b in Form von dimeren Aggregaten, welche im Fall von 7b,8b,9a sowie 9b auch r{\"o}ntgenstrukturanalytisch charakterisiert sind. Durch Reaktion der chiralen Ferrio-silanole Cp(OC)2Fe-Si(Me)(R)OH bzw. Cp(OC)(Ph3P)Fe-Si(Me)(R)OH mit AlMe3, GaMe3 bzw. InMe3 erh{\"a}lt man die diastereomeren Ferrio-siloxyalane, -gallane bzw. -indane 8c,9c,11a,b und 12a-c in Form von Dimeren, bei denen man die Aggregation auch NMR-spektroskopisch nachweisen kann. Die Reaktion der Ferrio-silandiole Cp(OC)2Fe-SiR(OH)2 (13a-c) mit einem bzw. zwei {\"A}quivalenten Trimethylgallium (6c) bzw. Trimethylindium (6e) liefert unter Methaneliminierung die dimeren Eisen-substituierten Gallium- bzw. Indiumsiloxanole 14a-e in einem Diastereomerenverh{\"a}ltnis von 50 : 50. 14a-e, die {\"u}ber eine freie Silanolfunktion verf{\"u}gen, zersetzen sich in L{\"o}sung infolge {\"U}bertragung des Wasserstoffs vom Sauerstoff auf das Eisenatom. Als Zersetzungsprodukte werden die Eisenhydrid-Verbindung Cp(OC)2Fe-H und Polyheterosiloxane des Typs [RSi(OEMe2)O]n erhalten. Bei der Umsetzung von Cp(OC)2Fe-Si(OH)3 (17) mit Trimethylgallium (6c) bzw. Trimethylindium (6e) erh{\"a}lt man unter Methanabspaltung das Eisen-substituierte Gallium- bzw. Indiumsiloxandiol (18a,b). Setzt man das Ferrio-silantriol 17 mit zwei {\"A}quivalenten Trimethylgallium (6c) in siedendem n-Hexan in Anwesenheit von vier {\"A}quivalenten Tetrahydrofuran um, so resultiert das auch r{\"o}ntgenstrukturanalytisch gesicherte K{\"a}figheterosiloxan 19. Die Umsetzung des Ferriomethyl-silanols Cp(OC)2Fe-CH2-SiMe2OH (20) mit den Trialkylverbindungen der Gruppe 13 (6b-e) liefert unter Alkaneliminierung glatt die Ferriomethyl-substituierten Heterosiloxane 21a-d. Die Aggregation zu Dimeren ist f{\"u}r 21b-d sowohl durch R{\"o}ntgenstrukturanalyse als auch durch Molgewichtsbestimmung gesichert. B. Phosphan-substituierte Ferrio-silanole und -silantriole: Synthese und Kondensation mit Dimethylchlorsilan Die zweifach Phosphan-substituierten Ferrio-silanole 4a,b k{\"o}nnen {\"u}ber die Hydrolyse der Ferrio-chlorsilane 2a,b in Anwesenheit von Al2O3 und Triethylamin dargestellt werden. Als alternativer Zugang findet sich der Co2(CO)8-katalysierte H/OH-Austausch an den Ferrio-silanen 3a,b in Gegenwart von Wasser. Der als Zwischenstufe postulierte, zweikernige Komplex Cp(Me3P)2Fe- Si(Me)(p-Tol)Co(CO)4 (5) kann durch Reaktion des Ferrio-silans 3b mit Co2(CO)8 erhalten werden. Das Triphenylphosphan-substituierte Ferrio-trichlorsilan Cp(OC)(Ph3P)Fe-SiCl3 (9) kann im Zweiphasensystem THF/H2O zum Phosphan-substituierten Ferrio-silantriol 10 hydrolysiert werden. Die entsprechende Hydrolyse des kinetisch deaktiverten Cp(Me3P)2Fe-SiCl3 (8b) muß durch Al2O3-Zusatz aktiviert werden. Die Umsetzung der Ferrio-silantriole 10, 11 mit drei {\"A}quivalenten Dimethylchlorsilan und Triethylamin als Hilfsbase f{\"u}hrt glatt zu den entsprechenden Ferrio-tetrasiloxanen 12a,b. C. Polychlorierte Metallo-siloxane: Synthese und Austausch- reaktionen mit Methanol und Wasser Die Synthese der polychlorierten Metallo-siloxane 3-5 gelingt durch Umsetzung der Metallate Na[Fe(CO)2Cp] (1a) bzw. Li[W(CO)2(PMe3)Cp] (1b) mit Hexachloro-disiloxan (2a) bzw. Octachlorotetrasiloxan (2b). Das Ferrio-disiloxan 3 kann durch Reaktion mit einem weiteren {\"A}quivalent des Natriumferrats 1a in die Bis(ferrio)-Spezies 6 {\"u}berf{\"u}hrt werden. Die NEt3-assistierte Methanolyse des Ferrio-disiloxans 3 mit drei {\"A}quivalenten MeOH f{\"u}hrt unter regiospezifischem Cl/OMe-Austausch am g-Si-Atom zum Trimethoxy-substituierten Ferrio-disiloxan 7, das durch L{\"o}sen in Methanol oder Zugabe eines {\"U}berschusses an MeOH in eine etherische L{\"o}sung von 7 in das vollst{\"a}ndig Methoxy-substituierte Derivat 8 umgewandelt werden kann. Bei der Umsetzung des Bis(ferrio)-siloxans 6 mit Methanol bzw. H2O als Nucleophil erh{\"a}lt man sowohl das Tetramethoxy- (10a) als auch das eigenkondensationsstabile Tetrahydroxy-disiloxan 10b, welches mit vier {\"A}quivalenten Dimethylchlorsilan zum entsprechenden Hexasiloxan 11 umgesetzt werden kann. D. Prim{\"a}re Ferrio-silylamine: Synthese und strukturelle Charakterisierung Die Einwirkung von Natriumamid auf die Phosphan-substituierten Ferrio-chlorsilane 2a-c f{\"u}hrt zu den entsprechenden prim{\"a}ren Ferrio-silylaminen 3a-c, welche die ersten {\"U}bergangsmetall-substituierten prim{\"a}ren Silylamine darstellen. Die Molek{\"u}lstruktur von 3b zeigt im Vergleich zu Organosilylaminen eine signifikante Verl{\"a}ngerung f{\"u}r die Si-N-Bindungsl{\"a}nge mit 1.751(4) {\AA} an.}, subject = {Silanole}, language = {de} } @phdthesis{Voegler2001, author = {V{\"o}gler, Matthias}, title = {Zweifach Eisen-substituierte Silane, Silanole und Siloxane}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1181568}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Die vorliegende Dissertation besch{\"a}ftigt sich mit der Darstellung {\"U}bergangsmetall-substitutierter Silane und Untersuchungen zum Einfluss verschiedener {\"U}bergangsmetallsubstituenten auf die chemischen und spektroskopischen Eigenschaften dieser Klasse von Siliciumverbindungen. Dabei steht insbesondere die Synthese mehrfach metallierter Silanole und Siloxane im Vordergrund. A - Halogenierte Bis(metallo)silane: Durch schrittweise Umsetzung von HSiCl3 oder HSiCl2Me mit den {\"U}bergangsmetallaten Na[Fe(CO)2Cp] oder Li[W(CO)2PMe3Cp] wurden verschiedene bismetalliete Silane [LnM]2SiRCl (R = H, Me) aufgebaut. Durch weitere Derivatisierung konnten u.a. die Bis(ferrio)silane [Cp(OC)2Fe]2SiX2 (X = F, Cl, Br, I) dargestellt und z. T. durch R{\"o}ntgenstrukturen charakterisiert werden. Aus diesen Verbindungen lassen sich durch photochemische CO-Eliminierung die µ2-silylenverbr{\"u}ckten Komplexe [Cp(OC)Fe]2(µ2-CO)(µ2-SiRHal) (R = Me, Halogen) gewinnen. B - Bis(metallo)silanole und -siloxane: Die unter A hergestellten Verbindungen dienten als Vorstufen zur Synthese der neuen Bis(ferrio)silanole [Cp(OC)2Fe]2SiX(OH) (X = H, Cl, OH) und des hetero-bismetallierten Silanols [Cp(OC)2Fe][Cp(OC)2PMe3]SiMe(OH). Dabei konnte lediglich [Cp(OC)2Fe]2SiH(OH) durch Hydrolyse des entsprechenden halogenierten Bis(ferrio)silans hergestellt werden. Alle anderen Bis(metallo)silanole wurden durch Oxygenierung der jeweiligen SiH-funktionellen Vorstufen mit Hilfe von Dimethyldioxiran synthetisiert. Alle Bis(metallo)silanole sind stabil bez{\"u}glich Eigenkondensation, lassen sich aber mit ClSiMe2H in die entsprechenden Siloxane [LnM]2SiR(OSiMe2H) umwandeln. C - Co2(CO)2 assistierte Hydrolyse von Silanen: Die Umsetzung verschiedener Si-H-funktioneller Silane R3Si-H mit Dicobaltoctacarbonyl f{\"u}hrt unter H2-Entwicklung zu Cobaltio-Silanen R3Si-Co(CO)4. Diese besitzen eine extrem labile Si-CoBindung, welche sich durch zahlreiche protische Reagenzien spalten l{\"a}ßt. Es wurden u. a die Cobaltio-Silane Me3SiOSiMe2-Co(CO4), Me(OMe)2Si-Co(CO)4 und Ph2SiCo2(CO)7 generiert und durch Hydrolyse in verschiedene Silanole oder Siloxane {\"u}berf{\"u}hrt. Eine direkte hydrolytische SiH/SiOH-Umwandlung ist auch in Gegenwart katalytischer Mengen Co2(CO)8 m{\"o}glich und wurde u.a. zur Darstellung des Bis(ferrio)siloxanols [Cp(OC)2Fe]2Si(OH)(OSiMe2H) genutzt. D - DFT-Berechnungen an {\"U}bergangsmetallverbindungen von Silicium und Phosphor: Die Strukturen der dimeren Siloxygallane (RH2SiOGaMe2)2 (R = H, tBu) wurden theoretisch berechnet. Man findet eine starke Abh{\"a}ngigkeit der Geometrie des zentralen viergliedrigen Ga-O-Ga-O-Ringes von Gr{\"o}ße und relativen Position der exocyclischen Substituenten R. Struktur- und NBO-Analyse des cyclischen Metallasiloxans Cp(OC)(H)Fe[SiMe2O]2SiMe2 belegen den Einfluß des Cp(OC)(H)Fe-Fragmentes auf Struktur und Bindungsverh{\"a}ltnisse des Heterosiloxan Ringes. Relative thermodynamische Stabilit{\"a}ten wurden f{\"u}r die diastereomeren Formen des kationischen Phosphankomplexe lk/ul-Cp*(OC)2Fe-P(Ph)(H)[CH(CO2Me)CH2CO2Me]+ und des µ2-silylenbr{\"u}ckten Eisenkomplexes cis/trans-[Cp(OC)Fe]2(µ2-CO)(µ2-SiH2) theoretisch berechnet.}, subject = {Eisenkomplexe}, language = {de} }