@phdthesis{Ansorg2015, author = {Ansorg, Kay}, title = {Development of Accurate Physically Grounded Force Fields for Intermolecular Cation-\$\pi\$ Interactions based on SAPT Energy Decomposition Analysis and Computational Investigation of Covalent Irreversible Vinyl Sulfone-based Protease Inhibitors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131084}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Part 1 of this work describes the development of accurate physically grounded force fields for intermolecular Cation-π interactions based on SAPT energy decomposition analysis. The presented results demonstrate the benefits of the used DFT-SAPT method to describe non-bonding interactions. First of all, this method is able to reproduce the high level CCSD(T) energy values but using much less computational time. Second it provides the possibility to separate the total intermolecular interaction energy into several physically meaningful contributions. The relative contributions of the dimers investigated can be seen in Fig. 6.16. In Tab. 6.3 the percentage contribution of the attractive energy parts to the stabilization energy is shown. The polarization energy is important for the NH+...C6H6 interaction, whereas it becomes less crucial considering other dimers. The dispersion energy contribution is large in the case of the C6H6...H2O dimers, whereas it is relatively less important for the NH+...C6H6 interaction. The electrostatic energy contributes a large amount of stabilizing energy in all considered dimer interactions. ...}, subject = {Kraftfeld}, language = {en} } @phdthesis{Schmidt2015, author = {Schmidt, Thomas Christian}, title = {Theoretical Investigations on the Interactions of Small Compounds with their Molecular Environments}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im ersten Teil dieser Arbeit wird eine Kombination theoretischer Methoden f{\"u}r die strukturbasierte Entwicklung neuer Wirkstoffe pr{\"a}sentiert. Ausgehend von der Kristallstruktur eines kovalenten Komplexes einer Modellverbindung mit dem Zielprotein wurde mit Hilfe von quantenmechanischen und QM/MM Rechnungen die genaue Geometrie des vorausgehenden nicht-kovalenten Komplexes betimmt. Letztere ist der bestimmende Faktor f{\"u}r die Reaktivit{\"a}t des Inhibitors gegen{\"u}ber der katalytisch aktiven Aminos{\"a}ure und damit f{\"u}r die Ausbildung einer kovalenten Bindung. Aus diesem Grund wurde diese Geometrie auch f{\"u}r die Optimierung der Substitutionsmusters des Ihnibitors verwendet, um dessen Affinit{\"a}t zum Zielenzyme zu verbessern ohne dass dieser seine F{\"a}higkeit kovalent an das aktive Zentrum zu binden verliert. Die Optimierung des Substitutionsmuster wurde doch Methode des Molekularen Dockings unterst{\"u}tzt, das diese optimal dazu geeignet sind, Bindungsaffinit{\"a}ten vorherzusagen, die durch eine Modifikation der chemischen Struktur entstehen. Eine Auswahl der besten Strukturen wurde anschließend verwendet, um zu {\"u}berpr{\"u}fen, ob die ver{\"a}nderten Molek{\"u}le noch gen{\"u}gen Reaktivit{\"a}t gegen{\"u}ber dem Zielprotein aufweisen. Molek{\"u}ldynamik Simulationen der neuen Verbindungen haben jedoch gezeigt, dass die ver{\"a}nderten Verbindungen nur so and das Protein binden, dass die Bilung eine kovalenten Bindung zum Enzym nicht mehr m{\"o}glich ist. Daher wurden in einem weiteren Schritt die Modellverbindungen weiter modifiziert. Neben {\"A}nderungen im Substitutionsmuster wurde auch die chemische Struktur im Kern ver{\"a}ndert. Die Bindungsaffinit{\"a}ten wurde wieder mittels Docking {\"u}berpr{\"u}ft. F{\"u}r die besten Bindungsposen wurden wieder Simulationen zur Molek{\"u}ldynamik durchgef{\"u}hrt, wobei diesmal die Ausbildung einer kovalenten Bindung zum Enzyme m{\"o}glich erscheint. In einer abschließenden Serie von QM/MM Rechnungen unter Ber{\"u}cksichtigung verschiedener Protonierungszust{\"a}nde des Inhibitors und des Proteins konnten Reaktionspfade und zugeh{\"o}rige Reaktionsenergien bestimmt werden. Die Ergebnisse lassen darauf schließen, dass eines der neu entwickelten Molek{\"u}le sowohl eine stark verbesserte Bindungsaffinit{\"a}t wie auch die M{\"o}glichkeit der kovalenten Bindung an Enzyme aufweist. Der zweite Teil der Arbeit konzentriert sich auf die Umgebungseinfl{\"u}sse auf die Elektronenverteilung eines Inhibitormodells. Als Grundlage dient ein vinylsulfon-basiertes Moek{\"u}l, f{\"u}r das eine experimentell bestimmte Kristallstruktur sowie ein theoretisch berechneter Protein Komplex verf{\"u}gbar sind. Ein Referendatensatz f{\"u}r diese Systeme wurde erstellt, indem der Konformationsraum des Inhibitors nach m{\"o}glichen Minimumsstrukturen abgesucht wurde, welche sp{\"a}ter mit den Geometrien des Molek{\"u}ls im Kristall und im Protein verglichen werden konnten. The Geometrie in der Kristallumgebung konnte direkt aus den experimentellen Daten {\"u}bernommen werden. Rechnungen zum nicht-kovalenten Protein Komplex hingegen haben gezeigt, dass f{\"u}r das Modellsystem mehrere Geometrien des Inhibiors sowie zwei Protonierungszust{\"a}nde f{\"u}r die katalytisch aktiven Aminos{\"a}uren m{\"o}glich sind. F{\"u}r die Analyse wurden daher alle m{\"o}glichen Proteinkomplexe mit der Kristallstruktur verglichen. Ebenso wurden Vergleiche mit der Geometrie des isolierten Molek{\"u}ls im Vakuum sowie der Geometrie in w{\"a}ssriger L{\"o}sung angestellt. F{\"u}r die Geometrie des Molek{\"u}ls an sich ergab sich eine gute {\"U}bereinstimmung f{\"u}r alle Modellsysteme, f{\"u}r die Wechselwirkungen mit der Umgebung jedoch nicht. Die Ausbildung von Dimeren in der Kristallumgebung hat einen stark stablisierenden Effekt und ist einer der Gr{\"u}nde, warum dieser Kristall so gut wie keine Fehlordungen aufweist. In den Proteinkomplexen hingegen ergibt sich eine Abstoßung zwischen dem Inhibitor und einer der katalytisch aktiven Aminos{\"a}uren. Als Ursache f{\"u}r diese Abstoßung konnte die Einf{\"u}hrung der Methylaminfunktion ausgemacht werden. Vermutlicherweise f{\"u}hrt diese strukturelle {\"A}nderung auch dazu, dass der Modellinhibitor nicht in der Lage ist, so wie die Leitstruktur K11777 an das aktive Zentrum des Enzyms zu binden.}, subject = {Theoretische Chemie}, language = {en} }