@phdthesis{Bangalore2022, author = {Bangalore, Disha Mohan}, title = {Mechanistic studies of protein-DNA interactions by single molecule atomic force microscopy}, doi = {10.25972/OPUS-25204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252047}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Protein-DNA interactions are central to many biological processes and form the bedrock of gene transcription, DNA replication, and DNA repair processes. Many proteins recognize specific sequences in DNA- a restriction enzyme must only cut at the correct sequence and a transcription factor should bind at its consensus sequence. Some proteins are designed to bind to specific structural or chemical features in DNA, such as DNA repair proteins and some DNA modifying enzymes. Target-specific DNA binding proteins initially bind to non-specific DNA and then search for their target sites through different types of diffusion mechanisms. Atomic force microscopy (AFM) is a single-molecule technique that is specifically well-suited to resolve the distinct states of target-specific as well as nonspecific protein-DNA interactions that are vital for a deeper insight into the target site search mechanisms of these enzymes. In this thesis, protein systems involved in epigenetic regulation, base excision repair (BER), and transcription are investigated by single-molecule AFM analyses complemented by biochemical and biophysical experiments. The first chapter of this thesis narrates the establishment of a novel, user-unbiased MatLab-based tool for automated DNA bend angle measurements on AFM data. This tool has then been employed to study the initial lesion detection step of several DNA glycosylases. These results promoted a model describing the altered plasticities of DNA at the target lesions of DNA glycosylases as the fundamental mechanism for their enhanced efficiency of lesion detection. In the second chapter of this thesis, the novel automated tool has been further extended to provide protein binding positions on the DNA along with corresponding DNA bend angles and applied to the study of DNMT3A DNA methyltransferase. These AFM studies revealed preferential co-methylation at specific, defined distances between two CpG sites by the enzyme and when combined with biochemical analyses and structural modelling supported novel modes of CpG co-methylation by DNMT3A. In the third chapter of this thesis, the role of 8-oxo-guanine glycosylase (hOGG1) in Myc-mediated transcription initiation has been investigated. AFM analyses revealed that in the presence of oxidative damage in DNA, Myc is recruited to its target site (E-box) by hOGG1 through direct protein-protein interactions, specifically under oxidizing conditions. Intriguingly, oxidation of hOGG1 was further observed to result in dimerization of hOGG1, which may also play a role in the mechanism of transcription regulation by hOGG1 under oxidative stress.}, subject = {Transcription}, language = {en} } @phdthesis{Hofstetter2022, author = {Hofstetter, Julia Eva Ines}, title = {MYC shapes the composition of RNA polymerase II through direct recruitment of transcription elongation factors}, doi = {10.25972/OPUS-24035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The transcription factor MYC is a onco-protein, found to be deregulated in many human cancers. High MYC levels correlate with an aggressive tumor outcome and poor survival rates. Despite MYC being discovered as an oncogene already in the 1970s, how MYC regulates transcription of its target genes, which are involved in cellular growth and proliferation, is not fully understood yet. In this study, the question how MYC influences factors interacting with the RNA polymerase II ensuring productive transcription of its target genes was addressed using quantitative mass spectrometry. By comparing the interactome of RNA polymerase II under varying MYC levels, several potential factors involved in transcriptional elongation were identified. Furthermore, the question which of those factors interact with MYC was answered by employing quantitative mass spectrometry of MYC itself. Thereby, the direct interaction of MYC with the transcription elongation factor SPT5, a subunit of the DRB-sensitivity inducing factor, was discovered and analyzed in greater detail. SPT5 was shown to be recruited to chromatin by MYC. In addition, the interaction site of MYC on SPT5 was narrowed down to its evolutionary conserved NGN-domain, which is the known binding site for SPT4, the earlier characterized second subunit of the DRB-sensitivity inducing factor. This finding suggests a model in which MYC and SPT4 compete for binding the NGN-domain of SPT5. Investigations of the SPT5-interacting region on MYC showed binding of SPT5 to MYC's N-terminus including MYC-boxes 0, I and II. In order to analyze proteins interacting specifically with the N-terminal region of MYC, a truncated MYC-mutant was used for quantitative mass spectrometric analysis uncovering reduced binding for several proteins including the well-known interactor TRRAP and TRRAP-associated complexes. Summarized, ...}, subject = {Transkription }, language = {en} } @article{JiBaderRamanathanetal.2021, author = {Ji, Changhe and Bader, Jakob and Ramanathan, Pradhipa and Hennlein, Luisa and Meissner, Felix and Jablonka, Sibylle and Mann, Matthias and Fischer, Utz and Sendtner, Michael and Briese, Michael}, title = {Interaction of 7SK with the Smn complex modulates snRNP production}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-21529-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259125}, pages = {1278}, year = {2021}, abstract = {Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand.}, language = {en} } @phdthesis{Ji2022, author = {Ji, Changhe}, title = {The role of 7SK noncoding RNA in development and function of motoneurons}, doi = {10.25972/OPUS-22463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In mammals, a major fraction of the genome is transcribed as non-coding RNAs. An increasing amount of evidence has accumulated showing that non-coding RNAs play important roles both for normal cell function and in disease processes such as cancer or neurodegeneration. Interpreting the functions of non-coding RNAs and the molecular mechanisms through which they act is one of the most important challenges facing RNA biology today. In my Ph.D. thesis, I have been investigating the role of 7SK, one of the most abundant non-coding RNAs, in the development and function of motoneurons. 7SK is a highly structured 331 nt RNA transcribed by RNA polymerase III. It forms four stem-loop (SL) structures that serve as binding sites for different proteins. Larp7 binds to SL4 and protects the 3' end from exonucleolytic degradation. SL1 serves as a binding site for HEXIM1, which recruits the pTEFb complex composed of CDK9 and cyclin T1. pTEFb has a stimulatory role for transcription and is regulated through sequestration by 7SK. More recently, a number of heterogeneous nuclear ribonucleoproteins (hnRNPs) have been identified as 7SK interactors. One of these is hnRNP R, which has been shown to have a role in motoneuron development by regulating axon growth. Taken together, 7SK's function involves interactions with RNA binding proteins, and different RNA binding proteins interact with different regions of 7SK, such that 7SK can be considered as a hub for recruitment and release of different proteins. The questions I have addressed during my Ph.D. are as follows: 1) which region of 7SK interacts with hnRNP R, a main interactor of 7SK? 2) What effects occur in motoneurons after the protein binding sites of 7SK are abolished? 3) Are there additional 7SK binding proteins that regulate the functions of the 7SK RNP? Using in vitro and in vivo experiments, I found that hnRNP R binds both the SL1 and SL3 region of 7SK, and also that pTEFb cannot be recruited after deleting the SL1 region but is able to bind to a 7SK mutant with deletion of SL3. In order to answer the question of how the 7SK mutations affect axon outgrowth and elongation in mouse primary motoneurons, we proceeded to conduct rescue experiments in motoneurons by using lentiviral vectors. The constructs were designed to express 7SK deletion mutants under the mouse U6 promoter and at the same time to drive expression of a 7SK shRNA from an H1 promoter for the depletion of endogenous 7SK. Using this system we found that 7SK mutants harboring deletions of either SL1 or SL3 could not rescue the axon growth defect of 7SK-depleted motoneurons suggesting that 7SK/hnRNP R complexes are integral for this process. In order to identify novel 7SK binding proteins and investigate their functions, I proceeded to conduct pull-down experiments by using a biotinylated RNA antisense oligonucleotide that targets the U17-C33 region of 7SK thereby purifying endogenous 7SK complexes. Following mass spectrometry of purified 7SK complexes, we identified a number of novel 7SK interactors. Among these is the Smn complex. Deficiency of the Smn complex causes the motoneuron disease spinal muscular atrophy (SMA) characterized by loss of lower motoneurons in the spinal cord. Smn has previously been shown to interact with hnRNP R. Accordingly, we found Smn as part of 7SK/hnRNP R complexes. These proteomics data suggest that 7SK potentially plays important roles in different signaling pathways in addition to transcription.}, subject = {Spliceosome}, language = {en} } @phdthesis{Kraus2021, author = {Kraus, Amelie Johanna}, title = {H2A.Z - a molecular guardian of RNA polymerase II transcription in African trypanosomes}, doi = {10.25972/OPUS-25056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250568}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In eukaryotes, the enormously long DNA molecules need to be packaged together with histone proteins into nucleosomes and further into compact chromatin structures to fit it into the nucleus. This nuclear organisation interferes with all phases of transcription that require the polymerase to bind to DNA. During transcription - the process in which the hereditary information stored in DNA is transferred to many transportable RNA molecules - nucleosomes form a physical obstacle for polymerase progression. Thus, transcription is usually accompanied by processes mediating nucleosome destabilisation, including post-translational histone modifications (PTMs) or exchange of canonical histones by their variant forms. To the best of our knowledge, acetylation of histones has the highest capability to induce chromatin opening. The lysine modification can destabilise histone-DNA interactions within a nucleosome and can serve as a binding site for various chromatin remodelers that can modify the nucleosome composition. For example, H4 acetylation can impede chromatin folding and can stimulate the exchange of canonical H2A histone by its variant form H2A.Z at transcription start sites (TSSs) in many eukaryotes, including humans. As histone H4, H2A.Z can be post-translationally acetylated and as acetylated H4, acetylated H2A.Z is enriched at TSSs suggested to be critical for transcription. However, thus far, it has been difficult to study the cause and consequence of H2A.Z acetylation. Even though, genome-wide chromatin profiling studies such as ChIP-seq have already revealed the genomic localisation of many histone PTMs and variant proteins, they can only be used to study individual chromatin marks and not to identify all factors important for establishing a distinct chromatin structure. This would require a comprehensive understanding of all marks associated to a specific genomic locus. However, thus far, such analyses of locus-specific chromatin have only been successful for repetitive regions, such as telomeres. In my doctoral thesis, I used the unicellular parasite Trypanosoma brucei as a model system for chromatin biology and took advantage of its chromatin landscape with TSSs comprising already 7\% of the total T. brucei genome (humans: 0.00000156\%). Atypical for a eukaryote, the protein-coding genes are arranged in long polycistronic transcription units (PTUs). Each PTU is controlled by its own ~10 kb-wide TSS, that lies upstream of the PTU. As observed in other eukaryotes, TSSs are enriched with nucleosomes containing acetylated histones and the histone variant H2A.Z. This is why I used T. brucei to particularly investigate the TSS-specific chromatin structures and to identify factors involved in H2A.Z deposition and transcription regulation in eukaryotes. To this end, I established an approach for locus-specific chromatin isolation that would allow me to identify the TSSs- and non-TSS-specific chromatin marks. Later, combining the approach with a method for quantifying lysine-specific histone acetylation levels, I found H2A.Z and H4 acetylation enriched in TSSs-nucleosomes and mediated by the histone acetyltransferases HAT1 and HAT2. Depletion of HAT2 reduced the levels of TSS-specific H4 acetylation, affected targeted H2A.Z deposition and shifted the sites of transcription initiation. Whereas HAT1 depletion had only a minor effect on H2A.Z deposition, it had a strong effect on H2A.Z acetylation and transcription levels. My findings demonstrate a clear link between histone acetylation, H2A.Z deposition and transcription initiation in the early diverged unicellular parasite T. brucei, which was thus far not possible to determine in other eukaryotes. Overall, my study highlights the usefulness of T. brucei as a model system for studying chromatin biology. My findings allow the conclusion that H2A.Z regardless of its modification state defines sites of transcription initiation, whereas H2A.Z acetylation is essential co-factor for transcription initiation. Altogether, my data suggest that TSS-specific chromatin establishment is one of the earliest developed mechanisms to control transcription initiation in eukaryotes.}, subject = {Chromatin}, language = {en} } @article{WylerMenegattiFrankeetal.2017, author = {Wyler, Emanuel and Menegatti, Jennifer and Franke, Vedran and Kocks, Christine and Boltengagen, Anastasiya and Hennig, Thomas and Theil, Kathrin and Rutkowski, Andrzej and Ferrai, Carmelo and Baer, Laura and Kermas, Lisa and Friedel, Caroline and Rajewsky, Nikolaus and Akalin, Altuna and D{\"o}lken, Lars and Gr{\"a}sser, Friedrich and Landthaler, Markus}, title = {Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection}, series = {Genome Biology}, volume = {18}, journal = {Genome Biology}, doi = {10.1186/s13059-017-1329-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173381}, year = {2017}, abstract = {Background Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications is sparse. Results Here, we show that HSV-1 induces the expression of about 1000 antisense transcripts from the human host cell genome. A subset of these is also activated by the closely related varicella zoster virus. Antisense transcripts originate either at gene promoters or within the gene body, and they show different susceptibility to the inhibition of early and immediate early viral gene expression. Overexpression of the major viral transcription factor ICP4 is sufficient to turn on a subset of antisense transcripts. Histone marks around transcription start sites of HSV-1-induced and constitutively transcribed antisense transcripts are highly similar, indicating that the genetic loci are already poised to transcribe these novel RNAs. Furthermore, an antisense transcript overlapping with the BBC3 gene (also known as PUMA) transcriptionally silences this potent inducer of apoptosis in cis. Conclusions We show for the first time that a virus induces widespread antisense transcription of the host cell genome. We provide evidence that HSV-1 uses this to downregulate a strong inducer of apoptosis. Our findings open new perspectives on global and specific alterations of host cell transcription by viruses.}, language = {en} } @phdthesis{Baluapuri2021, author = {Baluapuri, Apoorva}, title = {Molecular Mechanisms of MYC's impact on Transcription Elongation}, doi = {10.25972/OPUS-24380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Expression of the MYC oncoprotein, which binds the DNA at promoters of most transcribed genes, is controlled by growth factors in non-tumor cells, thus stimulating cell growth and proliferation. Here in this thesis, it is shown that MYC interacts with SPT5, a subunit of the RNA polymerase II (Pol II) elongation factor DSIF. MYC recruits SPT5 to promoters of genes and is required for its association with Pol II. The transfer of SPT5 is mediated by CDK7 activity on TFIIE, which evicts it from Pol II and allows SPT5 to bind Pol II. MYC is required for fast and processive transcription elongation, consistent with known functions of SPT5 in yeast. In addition, MYC increases the directionality of promoters by stimulating sense transcription and by suppressing the synthesis of antisense transcripts. The results presented in this thesis suggest that MYC globally controls the productive assembly of Pol II with general elongation factors to form processive elongation complexes in response to growth-factor stimulation of non-tumour cells. However, MYC is found to be overexpressed in many tumours, and is required for their development and progression. In this thesis it was found that, unexpectedly, such overexpression of MYC does not further enhance transcription but rather brings about squelching of SPT5. This reduces the processivity of Pol II on selected set of genes that are known to be repressed by MYC, leading to a decrease in growth-suppressive gene transcription and uncontrolled tumour growth}, language = {en} } @article{SchneiderDittrichBoecketal.2016, author = {Schneider, Eberhard and Dittrich, Marcus and B{\"o}ck, Julia and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and El Hajj, Nady and Haaf, Thomas}, title = {CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development}, series = {Gene}, volume = {592}, journal = {Gene}, number = {1}, doi = {10.1016/j.gene.2016.07.058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186936}, pages = {110-118}, year = {2016}, abstract = {Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.}, language = {en} } @article{MatosMachadoSchartletal.2019, author = {Matos, Isa and Machado, Miguel P. and Schartl, Manfred and Coelho, Maria Manuela}, title = {Allele-specific expression variation at different ploidy levels in Squalius alburnoides}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-40210-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200910}, pages = {3688}, year = {2019}, abstract = {Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying degree. The same phenomenon was only much later suspected to occur also in animals based on studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. Consequently, this species became a good model for understanding the evolution of gene expression regulation in polyploid vertebrates. Here, we analyzed for the first time genome-wide allele-specific expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. Instead, it was found only in a restricted number of genes, particularly ones with functions related to mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias may be an important mechanism in the achievement of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as in S. alburnoides.}, language = {en} } @article{RauertStuehmerBargouetal.2011, author = {Rauert, H. and St{\"u}hmer, T. and Bargou, R. and Wajant, H. and Siegmund, D.}, title = {TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms}, series = {Cell Death and Disease}, volume = {2}, journal = {Cell Death and Disease}, doi = {10.1038/cddis.2011.78}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133486}, pages = {e194}, year = {2011}, abstract = {The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFjBmediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFjB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival}, language = {en} }