@phdthesis{Niewidok2013, author = {Niewidok, Natalia}, title = {Modulation of radiosensitivity of human tumor and normal cells by inhibition of heat shock proteins Hsp90 and Hsp70}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78728}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Cancer is the leading cause of death in economically developed countries (Jemal et al. 2011). Heat shock protein 90 can be a promising target in cancer treatment as it is responsible for sustaining protein homeostasis in every human cell by folding and activating of more than 200 client proteins (Picard et al. 2002). Apart from strong anti-tumor activities in vitro (Smith et al. 2005) and in vivo (Supko et al. 1995), Hsp90 inhibitors can sensitize tumor cells to radiation (Bisht et al. 2003, Stingl et al.2010, Schilling et al. 2011). Recently, our group showed the radiosensitizing potential of novel Hsp90 inhibitors: NVP-AUY922 and NVP-BEP800 (Stingl et al. 2010). The drugs were administered to cancer cell lines of different origin 24 hours before irradiation (drug-first treatment). In the present work, we explored the effects of a schedule other than drug-first treatment on A549 and SNB19 tumor cell lines. Cell samples were treated with either NVP-AUY922 or NVP-BEP800 one hour before IR and kept in the drug-containing medium for up to 48 hours (simultaneous drug-IR treatment). Our findings showed that depending on the tumor cell line, the combination of Hsp90 inhibition and irradiation may result in radiosensitization or apoptosis of cancer cell lines. It is advised to adjust the sequence of treatment, involving Hsp90 inhibition and irradiation, on the basis of the genetic background of tumor cells. Before entering the clinic, novel therapeutics should be tested on non-malignant tissue to exclude their possible toxic activities. Thus, we applied the simultaneous drug-IR treatment on human skin fibroblast strains. This work showed that Hsp90 inhibitors NVP-AUY922 and NVP-BEP800 preferentially sensitize tumor cells to radiation, whereas the effect(s) on normal fibroblasts was much weaker. The exact mechanisms underlying the Hsp90 inhibitors' selectivity towards malignant cells remain to be elucidated. It was shown previously that the administration of Hsp90 inhibitors, including NVP-AUY922 and NVP-BEP800, induces heat shock response (Niewidok et al. 2012). Heat shock response triggers the up-regulation of Hsp70, which, due to its strong anti-apoptotic properties, might be responsible for reducing the effects of Hsp90 inhibition. The transfection with Hsp70 siRNA suppressed the NVP-AUY922-induced over-expression of the target protein. However, on the long-term scale, it did not influence the radiosensitivity of A549 and SNB19 cells. To summarize, the use of siRNA proved that Hsp70 inhibition could be used to support Hsp90 inhibition on the short-term scale. Therefore, for future works, more potent and stable methods of Hsp70 inhibition are needed. This thesis presented the effects induced by two novel Hsp90 inhibitors NVP-AUY922 and NVP-BEP800, in combination with irradiation in tumor cell lines as well as in normal skin fibroblasts. Hsp70 pre-silencing was tested as a method for improving radiosensitizing potential of NVP-AUY922. These results support the use of NVP-AUY922 and NVP-BEP800 in combination with irradiation in future clinical trials.}, subject = {Tumorzelle}, language = {en} }