@article{BistiRogalevKarolaketal.2017, author = {Bisti, F. and Rogalev, V. A. and Karolak, M. and Paul, S. and Gupta, A. and Schmitt, T. and G{\"u}ntherodt, G. and Eyert, V. and Sangiovanni, G. and Profeta, G. and Strocov, V. N.}, title = {Weakly-correlated nature of ferromagnetism in nonsymmorphic CrO\(_2\) revealed by bulk-sensitive soft-X-ray ARPES}, series = {Physical Review X}, volume = {7}, journal = {Physical Review X}, number = {4}, doi = {10.1103/PhysRevX.7.041067}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172251}, year = {2017}, abstract = {Chromium dioxide CrO\(_2\) belongs to a class of materials called ferromagnetic half-metals, whose peculiar aspect is that they act as a metal in one spin orientation and as a semiconductor or insulator in the opposite one. Despite numerous experimental and theoretical studies motivated by technologically important applications of this material in spintronics, its fundamental properties such as momentumresolved electron dispersions and the Fermi surface have so far remained experimentally inaccessible because of metastability of its surface, which instantly reduces to amorphous Cr\(_2\)O\(_3\). In this work, we demonstrate that direct access to the native electronic structure of CrO\(_2\) can be achieved with soft-x-ray angle-resolved photoemission spectroscopy whose large probing depth penetrates through the Cr\(_2\)O\(_3\) layer. For the first time, the electronic dispersions and Fermi surface of CrO\(_2\) are measured, which are fundamental prerequisites to solve the long debate on the nature of electronic correlations in this material. Since density functional theory augmented by a relatively weak local Coulomb repulsion gives an exhaustive description of our spectroscopic data, we rule out strong-coupling theories of CrO\(_2\). Crucial for the correct interpretation of our experimental data in terms of the valence-band dispersions is the understanding of a nontrivial spectral response of CrO\(_2\) caused by interference effects in the photoemission process originating from the nonsymmorphic space group of the rutile crystal structure of CrO\(_2\).}, language = {en} } @article{FengZhouQiuetal.2022, author = {Feng, Yi and Zhou, Jiadong and Qiu, Honglin and Schnitzlein, Matthias and Hu, Jingtao and Liu, Linlin and W{\"u}rthner, Frank and Xie, Zengqi}, title = {Boron-Locked Starazine - A Soluble and Fluorescent Analogue of Starphene}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {29}, doi = {10.1002/chem.202200770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276423}, year = {2022}, abstract = {A starlike heterocyclic molecule containing an electron-deficient nonaaza-core structure and three peripheral isoquinolines locked by three tetracoordinate borons, namely isoquinoline-nona-starazine (QNSA), is synthesized by using readily available reactants through a rather straightforward approach. This new heteroatom-rich QNSA possesses a quasi-planar π-backbone structure, and bears phenyl substituents on borons which protrude on both sides of the π-backbones endowing it with good solubility in common organic solvents. Contrasting to its starphene analogue, QNSA shows intense fluorescence with a quantum yield (PLQY) of up to 62 \% in dilute solution.}, language = {en} } @article{CharnukhaThirupathaiahZabolotnyyetal.2015, author = {Charnukha, A. and Thirupathaiah, S. and Zabolotnyy, V. B. and B{\"u}chner, B. and Zhigadlo, N. D. and Batlogg, B. and Yaresko, A. N. and Borisenko, S. V.}, title = {Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {10392}, doi = {10.1038/srep10392}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151987}, year = {2015}, abstract = {In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature T\(_{c}\)\(\approx\)55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe\(_{0.92}\)Co\(_{0.08}\)AsO, is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.}, language = {en} } @phdthesis{Meyer2015, author = {Meyer, Frank}, title = {Soft X-ray Spectroscopic Study of Amino Acid and Salt Solutions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124295}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {This thesis focuses on the investigation of the electronic structure of amino acids and salts in aqueous solution using X-ray spectroscopic methods. Both material groups are of fundamental importance with regards to many physiological reactions, especially for the Hofmeister effect which describes the solubility of proteins in salt solutions. Hence, the investigation of the electronic structure of amino acids and the influence of ions on the hydrogen bonding network of liquid water are important milestones to a deeper understanding of the Hofmeister series. Besides investigating the electronic structure of amino acids in aqueous solution, the spectra were used to develop a building block model of the spectral fingerprints of the functional groups and were compared to spectral signatures of suitable reference molecules. In the framework of this thesis, it is shown that the building block approach is a useful tool with allows the interpretation of spectral signatures of considerably more complex molecules In this work, the focus lies on the investigation of the occupied and unoccupied electronic states of molecules in solid state, as well as in aqueous solution. Hereby, different X-ray spectroscopic methods were applied. X-ray emission spectroscopy (XES) was used to probe the occupied electronic structure of the solution, while the unoccupied electronic structure was addressed by using X-ray absorption spectroscopy (XAS). Finally, resonant inelastic X-ray scattering (RIXS) as a combination of XAS and XES measurements provides the combined information about the unoccupied and occupied molecular levels. The element specific character of the three measurement methods is a feature which allows the investigation of the local electronic structure of a single functional group. With RIXS, also non-equivalent atoms of the same element can be addressed separately. Within this thesis firstly, a library of the XE spectra of all 20 proteinogenic amino acids in zwitterionic form is presented. From this sample-set XES fingerprints of the protonated alpha-amino group NH3+ and the deprotonated carboxylic group COO- were evaluated and used to identify the XES fingerprints of the nitrogen and oxygen containing functional groups of the side chains of the amino acids. The data is discussed based on a building block approach. Furthermore, the XE spectra of the functional groups of lysine and histidine, namely the NH2 group and the C3N2H4 ring structure, are both compared to XE spectra of suitable reference molecules (imidazole, ammonia and methylamine). It is found that the XE and RIXS spectra of the side chains of lysine and histidine show large similarities to the XE spectra of the reference molecules. This agreement in the XE and RIXS spectra allows a qualitative investigation of XE and RIXS spectra of more complex amino acids using the XE and RIXS spectra of suitable reference molecules. The chemical structure of histidine and proline is quite different from the structures of the other proteinogenic amino acids. Due to the unique chemical structure of the side chain which in both cases consists of a heterocyclic ring structure, these two amino acids were investigated in more detail. Zubavichus et al. [1] have shown that amino acids are decomposing while exposed to X-ray radiation of the experiment. The damage is irreversible and molecular fragments can adsorb on the membrane of the experimental setup. This contamination can also create a spectral signature which then overlaps with the signal of the solution and which complicates the interpretation of the data. To record spectra which are free from contributions of adsorbed molecular fragments on the membrane, the adsorption behavior was investigated. In contrast to the solid phase in which the amino acids are present as salts in one electronic conformation, the charge state of the amino acids can be manipulated in aqueous solution by tuning the pH-value. By doing this, all possible charge states are accessible (cation, anion, zwitterion). In this work it is shown that also the spectra of the different charge states can be modeled by the spectra of suitable reference molecules using the building block approach. The spectral changes occurring upon protonation and deprotonation of the functional groups are explored and verified by comparing them to theoretical calculations. The comparison with measurements of pyrrolidine show that the electronic structure which surrounds the nitrogen atom of proline is strongly influenced by the ring structure of the side chain. Furthermore, the proline, pyrrolidine, and histidine molecules are also degrading during the liquid sample measurements. This can be observed by the detection of a new spectral component which increases with the measurement time originating from the window membrane. In all cases, the speed of the agglomeration of molecular fragments at the membrane was observed to be highly sensitive to the pH value of the solution. To understand the Hofmeister series, also the impact of the salt ions have to be investigated. In this study the influence of potassium chloride (KCl) on the hydrogen bond network of water was studied by using non-resonantly excited XES as well as RIXS. A decreased dissociation of hydrogen molecules and changes in the molecular vibrations could be detected. These changes were interpreted with a molecular reorganization of the water molecules and a decreased number of hydrogen bonds.}, subject = {Aminos{\"a}uren}, language = {en} } @article{FiedlerElKarehEremeevetal.2014, author = {Fiedler, Sebastian and El-Kareh, Lydia and Eremeev, Sergey V. and Tereshchenko, Oleg E. and Seibel, Christoph and Lutz, Peter and Kokh, Konstantin A. and Chulkov, Evgueni V. and Kuznetsova, Tatyana V. and Grebennikov, Vladimir I. and Bentmann, Hendrik and Bode, Matthias and Reinert, Friedrich}, title = {Defect and structural imperfection effects on the electronic properties of BiTeI surfaces}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, number = {075013}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/7/075013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119467}, year = {2014}, abstract = {The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ~100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability.}, language = {en} } @article{DauthWiessnerFeyeretal.2014, author = {Dauth, M. and Wiessner, M. and Feyer, V. and Sch{\"o}ll, A. and Puschnig, P. and Reinert, F. and Kuemmel, S.}, title = {Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/10/103005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115180}, pages = {103005}, year = {2014}, abstract = {Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter are not eigenstates of a single-particle Hamiltonian and thus do not fit into the usual simple interpretation of electronic structure in terms of molecular orbitals. In a combined theoretical and experimental study we thus check whether a Dyson-orbital and a molecular-orbital based interpretation of ARPES lead to differences that are relevant on the experimentally observable scale. We discuss a scheme that allows for approximately calculating Dyson orbitals with moderate computational effort. Electronic relaxation is taken into account explicitly. The comparison reveals that while molecular orbitals are frequently good approximations to Dyson orbitals, a detailed understanding of photoemission intensities may require one to go beyond the molecular orbital picture. In particular we clearly observe signatures of the Dyson-orbital character for an adsorbed semiconductor molecule in ARPES spectra when these are recorded over a larger momentum range than in earlier experiments.}, language = {en} } @phdthesis{ElKareh2014, author = {El-Kareh, Lydia}, title = {Rashba-type spin-split surface states: Heavy post transition metals on Ag(111)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112722}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In the framework of this thesis, the structural and electronic properties of bismuth and lead deposited on Ag(111) have been investigated by means of low-temperature scanning tunneling microscopy (LT-STM) and spectroscopy (STS). Prior to spectroscopic investigations the growth characteristics have been investigated by means of STM and low energy electron diffraction (LEED) measurements. Submonolayer coverages as well as thick films have been investigated for both systems. Subsequently the quantum well characteristics of thick Pb films on Ag(111) have been analyzed and the quantum well character could be proved up to layer thicknesses of N ≈ 100 ML. The observed characteristics in STS spectra were explained by a simple cosine Taylor expansion and an in-plane energy dispersion could be detected by means of quasi-particle interferences. The main part of this work investigates the giant Rashba-type spin-split surface alloys of (√3 × √3)Pb/Ag(111)R30◦ and (√3 × √3)Bi/Ag(111)R30◦. With STS experiments the band positions and splitting strengths of the unoccupied (√3 × √3)Pb/Ag(111)R30◦ band dispersions could be resolved, which were unclear so far. The investigation by means of quasi-particle interferences resulted in the observation of several scattering events, which could be assigned as intra- and inter-band transitions. The analysis of scattering channels within a simple spin-conservation-approach turned out to be incomplete and led to contradictions between experiment and theory. In this framework more sophisticated DFT calculations could resolve the apparent deviations by a complete treatment of scattering in spin-orbit-coupled materials, which allows for constructive interferences in spin-flip scattering processes as long as the total momentum J_ is conserved. In a similar way the band dispersion of (√3 × √3)Bi/Ag(111)R30◦ was investigated. The STS spectra confirmed a hybridization gap opening between both Rashba-split bands and several intra- and inter-band scattering events could be observed in the complete energy range. The analysis within a spin-conservation-approach again turned out to be insufficient for explaining the observed scattering events in spin-orbit-coupled materials, which was confi by DFT calculations. Within these calculations an inter-band scattering event that has been identified as spin-conserving in the simple model could be assigned as a spin-flip scattering channel. This illustrates evidently how an incomplete description can lead to completely different indications. The present work shows that different spectroscopic STM modes are able to shed light on Rashba-split surface states. Whereas STS allowed to determine band onsets and splitting strengths, quasi-particle interferences could shed light on the band dispersions. A very important finding of this work is that spin-flip scattering events may result in constructive interferences, an eff which has so far been overlooked in related publications. Additionally it has been found that STM measurements can not distinguish between spin-conserving scattering events or spin-flip scattering events, which prevents to give a definite conclusion on the spin polarization for systems with mixed orbital symmetries just from the observed scattering events.}, subject = {Silber}, language = {en} } @phdthesis{Schoell2003, author = {Sch{\"o}ll, Achim}, title = {High-resolution investigation of the electronic structure of organic thin films}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10809}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die vorliegende Arbeit befasst sich mit der elektronischen Struktur organischer D{\"u}nnfilme. Eine zentrale Frage dabei ist der Einfluss der Wechselwirkung zwischen den Molek{\"u}len in der kondensierten Phase und der Wechselwirkung an metall-organischen Grenzfl{\"a}chen auf die elektronischen Eigenschaften. Dazu wurden die experimentellen Methoden Photoelektronenspektroskopie (PES) und R{\"o}ntgenabsorptionsspektroskopie (NEXAFS) mit h{\"o}chster Energieaufl{\"o}sung angewandt. Zus{\"a}tzlich wurden ab initio Rechnungen zur theoretischen Simulation von NEXAFS Spektren durchgef{\"u}hrt. Haupts{\"a}chlich wurden d{\"u}nne, vakuumsublimierte Filme aromatischer Modellmolek{\"u}le mit sauerstoffhaltigen funktionellen Gruppen (NTCDA, PTCDA, NDCA, BPDCA und ANQ) auf Ag(111) Oberfl{\"a}chen untersucht. Die ausgew{\"a}hlten Molek{\"u}le besitzen wegen ihrer großen delokalisierten p-Elektronensysteme sehr interessante Eigenschaften f{\"u}r die Anwendung in elektronischen Bauelementen. Dank der hohen Energieaufl{\"o}sung von Synchrotronstrahlungsquellen der dritten Generation war es erstmals m{\"o}glich, die Schwingungsfeinstruktur in den NEXAFS Spektren dieser kondensierten großen Molek{\"u}le sichtbar zu machen. Der Vergleich der Daten verschiedener Molek{\"u}le liefert dabei interessante Einblicke in den Kopplungmechanismus zwischen dem elektronischen {\"U}bergang und der Schwingungsanregung. Obwohl die Molek{\"u}le eine Vielzahl verschiedener Schwingungsmoden besitzen, kann man in deren NEXAFS Spektren beobachten, dass die elektronischen {\"U}berg{\"a}nge jeweils an haupts{\"a}chlich eine Schwingungsmode koppeln. Die hochaufgel{\"o}sten XPS Spektren der Molek{\"u}le NTCDA, PTCDA, NDCA, BPDCA und ANQ zeigen bestimmte systematische Unterschiede, so dass diese Spektren als Fingerabdruck f{\"u}r die jeweilige Substanz verwendet werden k{\"o}nnen. Durch die vergleichende Auswertung der Spektren konnten die 1s Bindungsenergien aller chemisch unterschiedlichen Kohlenstoff- und Sauerstoffatome bestimmt werden. Zus{\"a}tzliche Strukturen in den Spektren k{\"o}nnen shake-up Satelliten zugeschrieben werden. Die f{\"u}nf Molek{\"u}le stellen ein ideales Modellsystem dar, um fundamentale Aspekte der Rumpfelektronenspektroskopie zu untersuchen, wie Anfangs- und Endzustandseffekte und Satelliten, die durch die intramolekulare und intermolekulare Elektronendichteverteilung im Grund- und rumpfionisierten Zustand beeinflusst werden. Ein wichtiger Punkt dieser Dissertation sind spektroskopische Untersuchungen strukturell unterschiedlicher NTCDA Monolagenphasen auf Ag(111), deren Existenz aus vorangegangenen Arbeiten bekannt ist. Deutliche Unterschiede in der elektronischen Struktur der verschiedenen Phasen, die auf die Metall-Adsorbat Wechselwirkung zur{\"u}ckzuf{\"u}hren sind, konnten sowohl mittels XPS als auch mittels NEXAFS aufgezeigt werden. Sowohl f{\"u}r die komprimierte also auch f{\"u}r die relaxierte NTCDA Monolage kann die Bindung ans Substrat als schwach chemisorptiv charakterisiert werden, was eindeutig aus der Analyse der Satellitenstrukturen in den O 1s und C 1s XPS Spektren hervorgeht, die durch die dynamische Abschirmung durch Ladungstransfer vom Substrat erzeugt werden. Die NEXAFS Daten zeigen konsistent eine teilweise Besetzung des NTCDA LUMOs. Sowohl f{\"u}r die komprimierte als auch f{\"u}r die relaxierte NTCDA Monolage finden hochinteressante Phasen{\"u}berg{\"a}nge in ungeordnete Tieftemperaturphasen beim Abk{\"u}hlen auf 160 K statt. Dabei wird die Adsorbat-Substrat Wechselwirkung st{\"a}rker und das LUMO wird vollst{\"a}ndig besetzt. Dies kann in den NEXAFS Spektren anhand des Verschwindens der zugh{\"o}rigen {\"U}berg{\"a}nge beobachtet werden. Die XPS Spektren zeigen gleichzeitig eine deutliche Abnahme der Intensit{\"a}t schlecht abgeschirmter Photoemissionszust{\"a}nde, was auf die nun effektivere Ladungstransferabschirmung zur{\"u}ckzuf{\"u}hren ist. F{\"u}r den Phasen{\"u}bergang der relaxierten Monolage konnte mittels temperaturabh{\"a}ngiger NEXAFS Messungen eindeutig ein Hystereseverhalten gezeigt und die Hysteresekurve bestimmt werden. Die Hysterese betr{\"a}gt etwa 20 K. Des weiteren wurde aus SPA-LEED Messungen die Aktivierungsenergie f{\"u}r den Phasen{\"u}bergang der relaxierten Monolage beim Abk{\"u}hlen auf ca. 60 meV bestimmt. Schließlich wurden NEXAFS Untersuchungen an Poly{\"a}thylenproben mit verschiedenem Komonomergehalt durchgef{\"u}hrt. Unterschiede in den Absorptionsspektren von Proben mit unterschiedlichem Komonomeranteil konnten eindeutig auf die unterschiedliche Kristallinit{\"a}t der Proben zur{\"u}ckgef{\"u}hrt werden, indem eine hochkristalline Probe in situ bis zur Schmelztemperatur geheizt wurde. Ab initio Rechnungen an einer Modelmatrix aus Butanmolek{\"u}len zeigen, dass die Spektren von kristallinem und amorphem Poly{\"a}thylen aufgrund der intermolekularen Wechselwirkung deutliche Unterschiede haupts{\"a}chlich f{\"u}r Resonanzen mit starkem Rydberg Charakter aufweisen. Damit lassen sich die Unterschiede in den Poly{\"a}thylenspektren durch die {\"U}berlagerung der Signaturen der kristallinen und amorphen Anteile erkl{\"a}ren, die je nach Kristallinit{\"a}t der Probe in unterschiedlichen Verh{\"a}ltnissen vorliegen.}, subject = {D{\"u}nne Schicht}, language = {en} }