@article{DashtiGrkovicAbdelmohsenetal.2014, author = {Dashti, Yousef and Grkovic, Tanja and Abdelmohsen, Usama Ramadan and Hentschel, Ute and Quinn, Ronald J.}, title = {Production of Induced Secondary Metabolites by a Co-Culture of Sponge-Associated Actinomycetes, Actinokineospora sp EG49 and Nocardiopsis sp RV163}, series = {MARINE DRUGS}, volume = {12}, journal = {MARINE DRUGS}, number = {5}, issn = {1660-3397}, doi = {10.3390/md12053046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116547}, pages = {3046-3059}, year = {2014}, abstract = {Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by H-1 NMR. Ten known compounds, including angucycline, diketopiperazine and beta-carboline derivatives 1-10, were isolated from the EtOAc extracts of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three natural products that were not detected in the single culture of either microorganism, namely N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) and 5a, 6,11a, 12-tetrahydro-5a, 11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). When tested for biological activity against a range of bacteria and parasites, only the phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as an effective strategy to access the bioactive secondary metabolites hidden in the genomes of marine actinomycetes.}, language = {en} }