@article{PauliPaulProppertetal.2021, author = {Pauli, Martin and Paul, Mila M. and Proppert, Sven and Mrestani, Achmed and Sharifi, Marzieh and Repp, Felix and K{\"u}rzinger, Lydia and Kollmannsberger, Philip and Sauer, Markus and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, doi = {10.1038/s42003-021-01939-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259830}, pages = {407}, year = {2021}, abstract = {Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution.}, language = {en} } @article{LealSchwebsBriggsetal.2020, author = {Leal, Andrea Zurita and Schwebs, Marie and Briggs, Emma and Weisert, Nadine and Reis, Helena and Lemgruber, Leondro and Luko, Katarina and Wilkes, Jonathan and Butter, Falk and McCulloch, Richard and Janzen, Christian J.}, title = {Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation}, series = {Nucleic Acids Research}, volume = {48}, journal = {Nucleic Acids Research}, number = {17}, doi = {10.1093/nar/gkaa686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230579}, pages = {9660-9680}, year = {2020}, abstract = {Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to off-spring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.}, language = {en} } @article{NiewaldaVoellerEschbachetal.2011, author = {Niewalda, Thomas and V{\"o}ller, Thomas and Eschbach, Claire and Ehmer, Julia and Wen-Chuang, Chou and Timme, Marc and Fiala, Andr{\´e} and Gerber, Bertram}, title = {A Combined Perceptual, Physico-Chemical, and Imaging Approach to 'Odour-Distances' Suggests a Categorizing Function of the Drosophila Antennal Lobe}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0024300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133510}, pages = {e24300}, year = {2011}, abstract = {How do physico-chemical stimulus features, perception, and physiology relate? Given the multi-layered and parallel architecture of brains, the question specifically is where physiological activity patterns correspond to stimulus features and/or perception. Perceived distances between six odour pairs are defined behaviourally from four independent odour recognition tasks. We find that, in register with the physico-chemical distances of these odours, perceived distances for 3octanol and n-amylacetate are consistently smallest in all four tasks, while the other five odour pairs are about equally distinct. Optical imaging in the antennal lobe, using a calcium sensor transgenically expressed in only first-order sensory or only second-order olfactory projection neurons, reveals that 3-octanol and n-amylacetate are distinctly represented in sensory neurons, but appear merged in projection neurons. These results may suggest that within-antennal lobe processing funnels sensory signals into behaviourally meaningful categories, in register with the physico-chemical relatedness of the odours.}, language = {en} } @article{WilliamsChagtaiAlcaideGermanetal.2015, author = {Williams, Richard D. and Chagtai, Tasnim and Alcaide-German, Marisa and Apps, John and Wegert, Jenny and Popov, Sergey and Vujanic, Gordan and Van Tinteren, Harm and Van den Heuvel-Eibrink, Marry M and Kool, Marcel and De Kraker, Jan and Gisselsson, David and Graf, Norbert and Gessler, Manfred and Pritchard-Jones, Kathy}, title = {Multiple mechanisms of MYCN dysregulation in Wilms tumour}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {9}, doi = {10.18632/oncotarget.3377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143471}, pages = {7232-7243}, year = {2015}, abstract = {Genomic gain of the proto-oncogene transcription factor gene MYCN is associated with poor prognosis in several childhood cancers. Here we present a comprehensive copy number analysis of MYCN in Wilms tumour (WT), demonstrating that gain of this gene is associated with anaplasia and with poorer relapse-free and overall survival, independent of histology. Using whole exome and gene-specific sequencing, together with methylation and expression profiling, we show that MYCN is targeted by other mechanisms, including a recurrent somatic mutation, P44L, and specific DNA hypomethylation events associated with MYCN overexpression in tumours with high risk histologies. We describe parallel evolution of genomic copy number gain and point mutation of MYCN in the contralateral tumours of a remarkable bilateral case in which independent contralateral mutations of TP53 also evolve over time. We report a second bilateral case in which MYCN gain is a germline aberration. Our results suggest a significant role for MYCN dysregulation in the molecular biology of Wilms tumour. We conclude that MYCN gain is prognostically significant, and suggest that the novel P44L somatic variant is likely to be an activating mutation.}, language = {en} } @article{BurgsdorfSlabyHandleyetal.2015, author = {Burgsdorf, Ilia and Slaby, Beate M. and Handley, Kim M. and Haber, Markus and Blom, Jochen and Marshall, Christopher W. and Gilbert, Jack A. and Hentschel, Ute and Steindler, Laura}, title = {Lifestyle Evolution in Cyanobacterial Symbionts of Sponges}, series = {mBio}, volume = {6}, journal = {mBio}, number = {3}, doi = {10.1128/mBio.00391-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143117}, pages = {e00391-15}, year = {2015}, abstract = {The "Candidatus Synechococcus spongiarum" group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99\%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a "Ca. Synechococcus spongiarum" group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, "Ca. Synechococcus spongiarum" includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of "Ca. Synechococcus spongiarum," each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of "Ca. Synechococcus spongiarum" members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the "Ca. Synechococcus spongiarum" group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack. IMPORTANCE While the Synechococcus/Prochlorococcus-type cyanobacteria are widely distributed in the world's oceans, a subgroup has established its niche within marine sponge tissues. Recently, the first genome of sponge-associated cyanobacteria, " Candidatus Synechococcus spongiarum," was described. The sequencing of three representatives of different clades within this cyanobacterial group has enabled us to investigate intraspecies diversity, as well as to give a more comprehensive understanding of the common symbiotic features that adapt "Ca. Synechococcus spongiarum" to its life within the sponge host.}, language = {en} } @article{LitovkinVanEyndeJoniauetal.2015, author = {Litovkin, Kirill and Van Eynde, Aleyde and Joniau, Steven and Lerut, Evelyne and Laenen, Annouschka and Gevaert, Thomas and Gevaert, Olivier and Spahn, Martin and Kneitz, Burkhard and Gramme, Pierre and Helleputte, Thibault and Isebaert, Sofie and Haustermans, Karin and Bollen, Mathieu}, title = {DNA Methylation-Guided Prediction of Clinical Failure in High-Risk Prostate Cancer}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0130651}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151705}, pages = {e0130651}, year = {2015}, abstract = {Background Prostate cancer (PCa) is a very heterogeneous disease with respect to clinical outcome. This study explored differential DNA methylation in a priori selected genes to diagnose PCa and predict clinical failure (CF) in high-risk patients. Methods A quantitative multiplex, methylation-specific PCR assay was developed to assess promoter methylation of the APC, CCND2, GSTP1, PTGS2 and RARB genes in formalin-fixed, paraffin-embedded tissue samples from 42 patients with benign prostatic hyperplasia and radical prostatectomy specimens of patients with high-risk PCa, encompassing training and validation cohorts of 147 and 71 patients, respectively. Log-rank tests, univariate and multivariate Cox models were used to investigate the prognostic value of the DNA methylation. Results Hypermethylation of APC, CCND2, GSTP1, PTGS2 and RARB was highly cancer-specific. However, only GSTP1 methylation was significantly associated with CF in both independent high-risk PCa cohorts. Importantly, trichotomization into low, moderate and high GSTP1 methylation level subgroups was highly predictive for CF. Patients with either a low or high GSTP1 methylation level, as compared to the moderate methylation groups, were at a higher risk for CF in both the training (Hazard ratio [HR], 3.65; 95\% CI, 1.65 to 8.07) and validation sets (HR, 4.27; 95\% CI, 1.03 to 17.72) as well as in the combined cohort ( HR, 2.74; 95\% CI, 1.42 to 5.27) in multivariate analysis. Conclusions Classification of primary high-risk tumors into three subtypes based on DNA methylation can be combined with clinico-pathological parameters for a more informative risk-stratification of these PCa patients.}, language = {en} } @article{GroenewegvanRoyenFenzetal.2014, author = {Groeneweg, Femke L. and van Royen, Martin E. and Fenz, Susanne and Keizer, Veer I. P. and Geverts, Bart and Prins, Jurrien and de Kloet, E. Ron and Houtsmuller, Adriaan B. and Schmidt, Thomas S. and Schaaf, Marcel J. M.}, title = {Quantitation of Glucocorticoid Receptor DNA-Binding Dynamics by Single-Molecule Microscopy and FRAP}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0090532}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117085}, pages = {e90532}, year = {2014}, abstract = {Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (similar to 0.7 s) and the other half for longer time periods (similar to 2.3 s). A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors) show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (<= 1 ms) interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.}, language = {en} } @article{BischlerKopfVoss2014, author = {Bischler, Thorsten and Kopf, Matthias and Voss, Bjoern}, title = {Transcript mapping based on dRNA-seq data}, series = {BMC Bioinformatics}, volume = {15}, journal = {BMC Bioinformatics}, number = {122}, issn = {1471-2105}, doi = {10.1186/1471-2105-15-122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116663}, year = {2014}, abstract = {Background: RNA-seq and its variant differential RNA-seq (dRNA-seq) are today routine methods for transcriptome analysis in bacteria. While expression profiling and transcriptional start site prediction are standard tasks today, the problem of identifying transcriptional units in a genome-wide fashion is still not solved for prokaryotic systems. Results: We present RNASEG, an algorithm for the prediction of transcriptional units based on dRNA-seq data. A key feature of the algorithm is that, based on the data, it distinguishes between transcribed and un-transcribed genomic segments. Furthermore, the program provides many different predictions in a single run, which can be used to infer the significance of transcriptional units in a consensus procedure. We show the performance of our method based on a well-studied dRNA-seq data set for Helicobacter pylori. Conclusions: With our algorithm it is possible to identify operons and 5'- and 3'-UTRs in an automated fashion. This alleviates the need for labour intensive manual inspection and enables large-scale studies in the area of comparative transcriptomics.}, language = {en} } @article{IoakeimidisOttKozjakPavlovicetal.2014, author = {Ioakeimidis, Fotis and Ott, Christine and Kozjak-Pavlovic, Vera and Violitzi, Foteini and Rinotas, Vagelis and Makrinou, Eleni and Eliopoulos, Elias and Fasseas, Costas and Kollias, George and Douni, Eleni}, title = {A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {8}, doi = {10.1371/journal.pone.0104237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115581}, pages = {e104237}, year = {2014}, abstract = {Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases.}, language = {en} }