@article{BohnertSeiffertTrellaetal.2020, author = {Bohnert, Simone and Seiffert, Anja and Trella, Stefanie and Bohnert, Michael and Distel, Luitpold and Ondruschka, Benjamin and Monoranu, Camelia-Marie}, title = {TMEM119 as a specific marker of microglia reaction in traumatic brain injury in postmortem examination}, series = {International Journal of Legal Medicine}, volume = {134}, journal = {International Journal of Legal Medicine}, issn = {0937-9827}, doi = {10.1007/s00414-020-02384-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235346}, pages = {2167-2176}, year = {2020}, abstract = {The aim of the present study was a refined analysis of neuroinflammation including TMEM119 as a useful microglia-specific marker in forensic assessments of traumatic causes of death, e.g., traumatic brain injury (TBI). Human brain tissue samples were obtained from autopsies and divided into cases with lethal TBI (n = 25) and subdivided into three groups according to their trauma survival time and compared with an age-, gender-, and postmortem interval-matched cohort of sudden cardiovascular fatalities as controls (n = 23). Brain tissue samples next to cortex contusions and surrounding white matter as well as samples of the ipsilateral uninjured brain stem and cerebellum were collected and stained immunohistochemically with antibodies against TMEM119, CD206, and CCR2. We could document the highest number of TMEM119-positive cells in acute TBI death with highly significant differences to the control numbers. CCR2-positive monocytes showed a significantly higher cell count in the cortex samples of TBI cases than in the controls with an increasing number of immunopositive cells over time. The number of CD206-positive M2 microglial cells increased survival time-dependent. After 3 days of survival, the cell number increased significantly in all four regions investigated compared with controls. In sum, we validate a specific and robustly expressed as well as fast reacting microglia marker, TMEM119, which distinguishes microglia from resident and infiltrating macrophages and thus offers a great potential for the estimation of the minimum survival time after TBI.}, language = {en} } @article{BohnertGeorgiadesMonoranuetal.2021, author = {Bohnert, Simone and Georgiades, Kosmas and Monoranu, Camelia-Maria and Bohnert, Michael and B{\"u}ttner, Andreas and Ondruschka, Benjamin}, title = {Quantitative evidence of suppressed TMEM119 microglial immunohistochemistry in fatal morphine intoxications}, series = {International Journal of Legal Medicine}, volume = {135}, journal = {International Journal of Legal Medicine}, number = {6}, issn = {1437-1596}, doi = {10.1007/s00414-021-02699-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266934}, pages = {2315-2322}, year = {2021}, abstract = {The aim of this pilot study was to investigate the diagnostic potential of TMEM119 as a useful microglia-specific marker in combination with immunostainings for phagocytic function and infiltrating capacity of monocytes in cases of lethal monosubstance intoxications by morphine (MOR), methamphetamine (METH), and of ethanol-associated death (ETH) respectively. Human brain tissue samples were obtained from forensic autopsies of cases with single substance abuse (MOR, n = 8; ETH, n = 10; METH, n = 9) and then compared to a cohort of cardiovascular fatalities as controls (n = 9). Brain tissue samples of cortex, white matter, and hippocampus were collected and stained immunohistochemically with antibodies against TMEM119, CD68KiM1P, and CCR2. We could document the lowest density of TMEM119-positive cells in MOR deaths with highly significant differences to the control densities in all three regions investigated. In ETH and METH deaths, the expression of TMEM119 was comparable to cell densities in controls. The results indicate that the immunoreaction in brain tissue is different in these groups depending on the drug type used for abuse.}, language = {en} } @article{BeerHaertelHelfrichFoerster2022, author = {Beer, Katharina and H{\"a}rtel, Stephan and Helfrich-F{\"o}rster, Charlotte}, title = {The pigment-dispersing factor neuronal network systematically grows in developing honey bees}, series = {The Journal of Comparative Neurology}, volume = {530}, journal = {The Journal of Comparative Neurology}, number = {9}, doi = {10.1002/cne.25278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257300}, pages = {1321-1340}, year = {2022}, abstract = {The neuropeptide pigment-dispersing factor (PDF) plays a prominent role in the circadian clock of many insects including honey bees. In the honey bee brain, PDF is expressed in about 15 clock neurons per hemisphere that lie between the central brain and the optic lobes. As in other insects, the bee PDF neurons form wide arborizations in the brain, but certain differences are evident. For example, they arborize only sparsely in the accessory medulla (AME), which serves as important communication center of the circadian clock in cockroaches and flies. Furthermore, all bee PDF neurons cluster together, which makes it impossible to distinguish individual projections. Here, we investigated the developing bee PDF network and found that the first three PDF neurons arise in the third larval instar and form a dense network of varicose fibers at the base of the developing medulla that strongly resembles the AME of hemimetabolous insects. In addition, they send faint fibers toward the lateral superior protocerebrum. In last larval instar, PDF cells with larger somata appear and send fibers toward the distal medulla and the medial protocerebrum. In the dorsal part of the medulla serpentine layer, a small PDF knot evolves from which PDF fibers extend ventrally. This knot disappears during metamorphosis and the varicose arborizations in the putative AME become fainter. Instead, a new strongly stained PDF fiber hub appears in front of the lobula. Simultaneously, the number of PDF neurons increases and the PDF neuronal network in the brain gets continuously more complex.}, language = {en} } @article{AdamKircherSbieraetal.2021, author = {Adam, Pia and Kircher, Stefan and Sbiera, Iuliu and Koehler, Viktoria Florentine and Berg, Elke and Kn{\"o}sel, Thomas and Sandner, Benjamin and Fenske, Wiebke Kristin and Bl{\"a}ker, Hendrik and Smaxwil, Constantin and Zielke, Andreas and Sipos, Bence and Allelein, Stephanie and Schott, Matthias and Dierks, Christine and Spitzweg, Christine and Fassnacht, Martin and Kroiss, Matthias}, title = {FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale}, series = {Frontiers in Endocrinology}, volume = {12}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2021.712107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244653}, year = {2021}, abstract = {Background Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising. Materials and Methods Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable. Results PD-L1 TPS≥50\% was observed in 42\% of ATC and 26\% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30\%) than in PDTC (5\%; p<0.01) and NT (0\%, p<0.001). 53\% of PDTC samples had PD-L1 expression ≤5\%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS. Conclusion High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.}, language = {en} }