@phdthesis{Geissler2003, author = {Geißler, Jochen}, title = {Magnetische Streuung an Grenz- und Viellagenschichten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8024}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Im Rahmen dieser Arbeit wurde eine neuartige Methode entwickelt, mit der es m{\"o}glich ist, Magnetisierungsverl{\"a}ufe ausgew{\"a}hlter Schichten und Grenzfl{\"a}chen in d{\"u}nnen Schichtsystemen zu bestimmen. Diese Resonante Magnetische R{\"o}ntgenreflektometrie (XRMR: X-ray Resonant Magnetic Reflectometry) kombiniert die Methode der konventionellen R{\"o}ntgenreflektometrie mit resonanten magnetischen Effekten, die an Absorptionskanten magnetischer Atome auftreten. Analog zur herk{\"o}mmlichen Reflektometrie, die Aussagen {\"u}ber Schichtdicken und vertikale Grenzfl{\"a}chenrauhigkeiten zul{\"a}sst, liefert die XRMR das tiefenabh{\"a}ngige magneto-optische Profil der untersuchten magnetischen Schicht. Durch die Aufnahme zweier Reflexionsspektren bei invertierter Helizit{\"a}t des einfallenden R{\"o}ntgenstrahls oder Umkehr der Magnetisierungsrichtung der Probe in der N{\"a}he der Absorptionskante eines magnetischen Elements erh{\"a}lt man als Messsignal das Asymmetrieverh{\"a}ltnis, das die Information {\"u}ber das tiefenabh{\"a}ngige Magnetisierungsprofil der untersuchten Schicht enth{\"a}lt. Zur Anpassung an die gemessene Asymmetrie {\"u}ber ein optisches N{\"a}herungsverfahren ist die Modellierung der optischen Konstanten der magnetischen Schicht oder Grenzfl{\"a}che notwendig, die hierzu in viele d{\"u}nne Einzelschichten k{\"u}nstlich aufgeteilt wird. Wichtig hierbei ist die korrekte Bestimmung der dispersiven und absorptiven Ladungsanteilen des komplexen Brechungsindex durch vorherige Messung des Absorptionskoeffizienten und der Berechnung der Dispersion {\"u}ber die Kramers-Kronig-Relation. XRMR-Experimente wurden an Pt/Co-Schichtsystemen an den Synchrotronstrahlungsquellen HASYLAB/Hamburg und BESSYII/Berlin durchgef{\"u}hrt, um die Anwendbarkeit der Messmethodik im harten und weichen R{\"o}ntgenbereich zu demonstrieren. Durch die intrinsische Elementselektivit{\"a}t resonanter Streuung und die Verst{\"a}rkung magnetischer Effekte durch Interferenzerscheinungen ist es m{\"o}glich, Informationen {\"u}ber sehr kleine induzierte magnetische Momente an der Grenzfl{\"a}che zu einer ferromagnetischen Schicht zu erhalten. Dies konnte bei der Untersuchung einer einzelnen Pt/Co-Bilage gezeigt werden, bei der das Magnetisierungsprofil der Pt-Schicht an der Pt/Co-Grenzfl{\"a}che bestimmt wurde. Im Weiteren konnte durch XRMR-Messungen an einer Serie von einzelnen Pt/Co-Grenz{\"u}berg{\"a}ngen das Zusammenspiel von chemischer Grenzfl{\"a}chenrauhigkeit und induziertem Pt-Magnetisierungsprofil untersucht werden. Wichtig war es, die Einsetzbarkeit der Methode im weichen R{\"o}ntgenbereich zu zeigen, in dem die L2,3 Kanten der 3d-{\"U}bergangsmetalle liegen, die f{\"u}r den Magnetismus eine herausragende Rolle spielen. Hierbei konnte durch Messung an der Co-L3 Kante das Magnetisierungsprofil einer einzelnen Co-Schicht in einer Pt/Co/Cu-Trilage extrahiert werden. Des Weiteren erlaubt die Methode die Aufnahme elementspezifischer Hysteresekurven vergrabener d{\"u}nner Schichten in Schichtsystemen mit hoher Qualit{\"a}t. Das Verfahren ist daher pr{\"a}destiniert zur quantitativen Untersuchung von modernen neuen magnetoelektronischen Komponenten wie GMR- und TMR-Sensoren, MRAM's oder Halbleiterstrukturen der viel versprechenden „Spintronic". Es k{\"o}nnen bei derartigen Systemen Grenzfl{\"a}chenph{\"a}nomene vergrabener Schichten zerst{\"o}rungsfrei untersucht werden und im Weiteren auch Themen, die eher der Grundlagenforschung zuzuordnen sind, wie induzierter Grenzfl{\"a}chenmagnetismus oder auch oszillatorische Austauschkopplung in Zukunft quantitativ und elementselektiv behandelt werden.}, subject = {D{\"u}nne Schicht}, language = {de} }