@article{AidoZaitsevaWajantetal.2021, author = {Aido, Ahmed and Zaitseva, Olena and Wajant, Harald and Buzgo, Matej and Simaite, Aiva}, title = {Anti-Fn14 antibody-conjugated nanoparticles display membrane TWEAK-like agonism}, series = {Pharmaceutics}, volume = {13}, journal = {Pharmaceutics}, number = {7}, issn = {1999-4923}, doi = {10.3390/pharmaceutics13071072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242710}, year = {2021}, abstract = {Conventional bivalent IgG antibodies targeting a subgroup of receptors of the TNF superfamily (TNFSF) including fibroblast growth factor-inducible 14 (anti-Fn14) typically display no or only very limited agonistic activity on their own and can only trigger receptor signaling by crosslinking or when bound to Fcγ receptors (FcγR). Both result in proximity of multiple antibody-bound TNFRSF receptor (TNFR) molecules, which enables engagement of TNFR-associated signaling pathways. Here, we have linked anti-Fn14 antibodies to gold nanoparticles to mimic the "activating" effect of plasma membrane-presented FcγR-anchored anti-Fn14 antibodies. We functionalized gold nanoparticles with poly-ethylene glycol (PEG) linkers and then coupled antibodies to the PEG surface of the nanoparticles. We found that Fn14 binding of the anti-Fn14 antibodies PDL192 and 5B6 is preserved upon attachment to the nanoparticles. More importantly, the gold nanoparticle-presented anti-Fn14 antibody molecules displayed strong agonistic activity. Our results suggest that conjugation of monoclonal anti-TNFR antibodies to gold nanoparticles can be exploited to uncover their latent agonism, e.g., for immunotherapeutic applications.}, language = {en} } @phdthesis{Aumueller2014, author = {Aum{\"u}ller, Ruth Inge}, title = {CD40-restringierte Aktivierung der TRAIL-Todesrezeptoren durch bifunktionelle rekombinante Proteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106813}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Der Ligand TRAIL wurde 1997 aufgrund seiner hohen Sequenzhomolgie ge-gen{\"u}ber dem TNFL CD95L entdeckt (28 \%). Allerdings besitzt TRAIL, anders als die Liganden CD95L und TNF, die bemerkenswerte Eigenschaft vor allem in ver{\"a}nderten Zellen Apoptose zu induzieren, w{\"a}hrend gesunde Zellen davor bewahrt werden. Die TRAIL-induzierte Apoptose wird durch die apoptoseinduzierenden Todesrezeptoren TRAILR1 und TRAILR2 vermittelt. Allerdings bindet und aktiviert l{\"o}sliches TRAIL haupts{\"a}chlich den Todesrezeptor TRAILR1, w{\"a}hrend membrangebundes TRAIL sowohl TRAILR1 als auch TRAILR2 gut aktiviert. In den letzten Jahren wurden verschiedene Methoden entwickelt, um die Bioaktivit{\"a}t l{\"o}slicher TNFL zu steigern. Hierzu z{\"a}hlen z.B.: Stabilisierung der trimeren Molek{\"u}lanordnung {\"u}ber die TNC-Dom{\"a}ne, Oligomerisierung des Flag-getaggten Liganden mithilfe des monoklonalen Antik{\"o}rpers M2, sowie Generierung einer artifiziellen, antigenabh{\"a}ngigen Membranst{\"a}ndigkeit. In dieser Arbeit wurde der Oberfl{\"a}chenrezeptor CD40 zur Immobilisierung des generierten Fusionsproteins scFv:CD40-Flag-TNC-TRAIL genutzt. In verschieden Experimenten konnten mit scFv:CD40-Flag-TNC-TRAIL in CD40-exprimierenden Zellen starke Apoptoseinduktion ermittelt werden. Charakteris-tische Kennzeichen und Spaltprodukte der Apoptose konnten ausschließlich in CD40-positiven Tumorzellen detektiert werden. Dabei wurde in allen Versuchen die f{\"u}r die Apoptoseinduktion ben{\"o}tigte Konzentration des Konstrukts mithilfe des Proteinsyntheseinhibitors CHX um das 10- bis 100-fache verringert. Es konnte auch gezeigt werden, dass in CD40-positiven Zellen, nach Stimulation mit scFv:CD40-Flag-TNC-TRAIL, nicht-apoptotische Signalwege verst{\"a}rkt aktiviert werden. Dies war auf die agonistische Aktivit{\"a}t des monoklonalen Antik{\"o}rperfragments scFv:CD40 zur{\"u}ckzuf{\"u}hren. Die Antik{\"o}rperdom{\"a}ne war folglich nicht nur zur effizienten Aktivierung der TRAIL-Todesrezeptoren mittels Immobilisierung f{\"a}hig, sondern konnte zus{\"a}tzlich zur Stimulation des Immunsystems genutzt werden. Zusammenfassend konnte gezeigt werden, dass der l{\"o}sliche, schwach aktive Ligand TRAIL mittels Oberfl{\"a}chenimmobilisierung {\"u}ber Antigen-Antik{\"o}rper-Wechselwirkungen in einen hochaktiven Liganden mit lokal begrenzter Toxizit{\"a}t {\"u}berf{\"u}hrt werden kann. Mithilfe dieses Fusionsproteins ist es somit m{\"o}glich die selektive Toxizit{\"a}t von TRAIL durch Steigerung seiner Aktivit{\"a}t effizient zu nutzen. Zus{\"a}tzlich kann durch die Antigenbindung der Wirkungsbereich weiter eingegrenzt werden (CD40-positive Tumoren), wodurch unerw{\"u}nschte Nebenwirkungen reduziert oder sogar ausgeschaltet werden k{\"o}nnen. Das in Tumoren oft heruntergefahrene Immunsystem kann CD40-abh{\"a}ngig stimuliert werden, um somit auch Tumorzellen in apoptoseresistenten Stadien zu eliminieren. Basierend auf diesen Ergebnissen k{\"o}nnen in der Zukunft weitere Studien zur Therapie von TRAIL-resistenten, CD40-exprimierenden Tumoren fortgef{\"u}hrt werden.}, subject = {Tumor-Nekrose-Faktor / Rekombinantes Protein}, language = {de} } @phdthesis{Banaszek2013, author = {Banaszek, Agnes}, title = {Dual Antigen-Restricted Complementation of a Two-Part Trispecific Antibody for Targeted Immunotherapy of Blood Cancer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90174}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Cancer cells frequently escape from immune surveillance by down-regulating two important components of the immune defence: antigen-presenting MHC and costimulatory molecules. Therefore several novel anti-tumour compounds that aim to assist the immune system in recognising and fighting cancer are currently under development. Recombinant bispecific antibodies represent one group of such novel therapeutics. They target two different antigens and recruit cytotoxic effector cells to tumour cells. For cancer immunotherapy, bispecific T cell-engaging antibodies are already well characterised. These antibodies target a tumour-associated antigen and CD3ε, the constant molecule of the T cell receptor complex. On the one hand, this study presents the development of a bispecific antibody targeting CD3ε and the rhabdomyosarcoma-associated fetal acetylcholine receptor. On the other hand, it describes a novel two-part trispecific antibody format for the treatment of leukaemia and other haematological malignancies in the context of haematopoietic stem cell transplantation (HSCT). For HSCT, an HLA-identical donor is preferred, but very rarely available. In an HLA-mismatched setting, the HLA disparity could be exploited for targeted cancer treatment. In the present study, a two-part trispecific HLA-A2 × CD45 × CD3 antibody was developed for potential cases in which the patient is HLA-A2-positive, but the donor is not. This holds true for about half the cases in Germany, since HLA-A2 is the most common HLA molecule found here. Combinatorial targeting of HLA-A2 and the leucocyte-common antigen CD45 allows for highly specific dual-antigen restricted tumour targeting. More precisely, two single-chain antibody constructs were developed: i) a single-chain variable fragment (scFv) specific for HLA-A2, and ii) a scFv against CD45, both linked to the VL and the VH domain of a CD3ε-specific antibody, respectively. It turned out that, after the concomitant binding of these constructs to the same HLA-A2- and CD45-expressing cell, the unpaired variable domains of a CD3ε-specific antibody assembled to a functional scFv. In a therapeutic situation, this assembly should exclusively occur on the recipient's blood cancer cells, leading to T cell-mediated cancer cell destruction. In this way, a relapse of disease might be prevented, and standard therapy (radiation and chemotherapy) might be omitted. For both approaches, the antibody constructs were periplasmically expressed in E. coli, purified via His tag, and biochemically characterised. Their binding to the respective targets was proven by flow cytometry. The stimulatory properties of the antibodies were assayed by measuring IL-2 release after incubation with T cells and antigen-expressing target cells. Both the bispecific antibody against rhabdomyosarcoma and the assembled trispecific antibody against blood cancer mediated T-cell activation in a concentration-dependent manner at nanomolar concentrations. For the trispecific antibody, this effect indeed proved to be dual antigen-restricted, as it could be blocked by prior incubation of either HLA-A2- or CD45-specific scFv and did not occur on single-positive (CD45+) or double-negative (HLA-A2- CD45-) target cells. Furthermore, antibodies from both approaches recruited T cells for tumour cell destruction in vitro.}, subject = {Immuntherapie}, language = {en} } @article{BaurBuentemeyerMegerleetal.2017, author = {Baur, Johannes and B{\"u}ntemeyer, Tjark-Ole and Megerle, Felix and Deutschbein, Timo and Spitzweg, Christine and Quinkler, Marcus and Nawroth, Peter and Kroiss, Matthias and Germer, Christoph-Thomas and Fassnacht, Martin and Steger, Ulrich}, title = {Outcome after resection of Adrenocortical Carcinoma liver metastases: a retrospective study}, series = {BMC Cancer}, volume = {17}, journal = {BMC Cancer}, number = {522}, doi = {10.1186/s12885-017-3506-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159409}, year = {2017}, abstract = {Background: Metastatic Adrenocortical Carcinoma (ACC) is a rare malignancy with a poor 5-year-survival rate (<15\%). A surgical approach is recommended in selected patients if complete resection of distant metastasis can be achieved. To date there are only limited data on the outcome after surgical resection of hepatic metastases of ACC. Methods: A retrospective analysis of the German Adrenocortical Carcinoma Registry was conducted. Patients with liver metastases of ACC but without extrahepatic metastases or incomplete tumour resection were included. Results: Seventy-seven patients fulfilled these criteria. Forty-three patients underwent resection of liver metastases of ACC. Complete tumour resection (R0) could be achieved in 30 (69.8\%). Median overall survival after liver resection was 76.1 months in comparison to 10.1 months in the 34 remaining patients with unresected liver metastases (p < 0.001). However, disease free survival after liver resection was only 9.1 months. Neither resection status (R0/R1) nor extent of liver resection were significant predictive factors for overall survival. Patients with a time interval to the first metastasis/recurrence (TTFR) of greater than 12 months or solitary liver metastases showed significantly prolonged survival. Conclusions: Liver resection in the case of ACC liver metastases can achieve long term survival with a median overall survival of more than 5 years, but disease free survival is short despite metastasectomy. Time to recurrence and single versus multiple metastases are predictive factors for the outcome.}, language = {en} } @article{CarmonaAranaSeherNeumannetal.2014, author = {Carmona Arana, Jos{\´e} Antonio and Seher, Axel and Neumann, Manfred and Lang, Isabell and Siegmund, Daniela and Wajant, Harald}, title = {TNF Receptor-Associated Factor 1 is a Major Target of Soluble TWEAK}, series = {Frontiers in Immunology}, volume = {5}, journal = {Frontiers in Immunology}, number = {63}, issn = {1664-3224}, doi = {10.3389/fimmu.2014.00063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120620}, year = {2014}, abstract = {Soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), in contrast to membrane TWEAK and TNF, is only a weak activator of the classical NFκB pathway. We observed that soluble TWEAK was regularly more potent than TNF with respect to the induction of TNF receptor-associated factor 1 (TRAF1), a NFκB-controlled signaling protein involved in the regulation of inflammatory signaling pathways. TNF-induced TRAF1 expression was efficiently blocked by inhibition of the classical NFκB pathway using the IKK2 inhibitor, TPCA1. In contrast, in some cell lines, TWEAK-induced TRAF1 production was only partly inhibited by TPCA1. The NEDD8-activating enzyme inhibitor MLN4924, however, which inhibits classical and alternative NFκB signaling, blocked TNF- and TWEAK-induced TRAF1 expression. This suggests that TRAF1 induction by soluble TWEAK is based on the cooperative activity of the two NFκB signaling pathways. We have previously shown that oligomerization of soluble TWEAK results in ligand complexes with membrane TWEAK-like activity. Oligomerization of soluble TWEAK showed no effect on the dose response of TRAF1 induction, but potentiated the ability of soluble TWEAK to trigger production of the classical NFκB-regulated cytokine IL8. Transfectants expressing soluble TWEAK and membrane TWEAK showed similar induction of TRAF1 while only the membrane TWEAK expressing cells robustly stimulated IL8 production. These data indicate that soluble TWEAK may efficiently induce a distinct subset of the membrane TWEAK-targeted genes and argue again for a crucial role of classical NFκB pathway-independent signaling in TWEAK-induced TRAF1 expression. Other TWEAK targets, which can be equally well induced by soluble and membrane TWEAK, remain to be identified and the relevance of the ability of soluble TWEAK to induce such a distinct subset of membrane TWEAK-targeted genes for TWEAK biology will have to be clarified in future studies.}, language = {en} } @article{ChopraBiehlSteinfattetal.2016, author = {Chopra, Martin and Biehl, Marlene and Steinfatt, Tim and Brandl, Andreas and Kums, Juliane and Amich, Jorge and Vaeth, Martin and Kuen, Janina and Holtappels, Rafaela and Podlech, J{\"u}rgen and Mottok, Anja and Kraus, Sabrina and Jord{\´a}n-Garotte, Ana-Laura and B{\"a}uerlein, Carina A. and Brede, Christian and Ribechini, Eliana and Fick, Andrea and Seher, Axel and Polz, Johannes and Ottmueller, Katja J. and Baker, Jeannette and Nishikii, Hidekazu and Ritz, Miriam and Mattenheimer, Katharina and Schwinn, Stefanie and Winter, Thorsten and Sch{\"a}fer, Viktoria and Krappmann, Sven and Einsele, Hermann and M{\"u}ller, Thomas D. and Reddehase, Matthias J. and Lutz, Manfred B. and M{\"a}nnel, Daniela N. and Berberich-Siebelt, Friederike and Wajant, Harald and Beilhack, Andreas}, title = {Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion}, series = {Journal of Experimental Medicine}, volume = {213}, journal = {Journal of Experimental Medicine}, number = {9}, doi = {10.1084/jem.20151563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187640}, pages = {1881-1900}, year = {2016}, abstract = {Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.}, language = {en} } @article{ChopraLangSalzmannetal.2013, author = {Chopra, Martin and Lang, Isabell and Salzmann, Steffen and Pachel, Christina and Kraus, Sabrina and B{\"a}uerlein, Carina A. and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Mattenheimer, Katharina and Ritz, Miriam and Schwinn, Stefanie and Graf, Carolin and Sch{\"a}fer, Viktoria and Frantz, Stefan and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {Tumor Necrosis Factor Induces Tumor Promoting and Anti-Tumoral Effects on Pancreatic Cancer via TNFR1}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97246}, year = {2013}, abstract = {Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5\%), TNF deficient (12.5\%), and TNFR2 deficient mice (22.2\%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.}, language = {en} } @article{ElHawarySayedMohammedetal.2019, author = {El-Hawary, Seham S. and Sayed, Ahmed M. and Mohammed, Rabab and Hassan, Hossam M. and Rateb, Mostafa E. and Amin, Elham and Mohammed, Tarek A. and El-Mesery, Mohamed and Bin Muhsinah, Abdullatif and Alsayari, Abdulrhman and Wajant, Harald and Anany, Mohamed A. and Abdelmohsen, Usama Ramadan}, title = {Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella}, series = {Marine Drugs}, volume = {17}, journal = {Marine Drugs}, number = {8}, doi = {10.3390/md17080465}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201485}, pages = {465}, year = {2019}, abstract = {In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32\% and 41.76\% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents.}, language = {en} } @article{ElMeseryTrebingSchaferetal.2013, author = {El-Mesery, M. and Trebing, J. and Schafer, V. and Weisenberger, D. and Siegmund, D. and Wajant, H.}, title = {CD40-directed scFv-TRAIL fusion proteins induce CD40-restricted tumor cell death and activate dendritic cells}, series = {Cell Death \& Disease}, volume = {4}, journal = {Cell Death \& Disease}, number = {e916}, doi = {10.1038/cddis.2013.402}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128777}, year = {2013}, abstract = {Targeted cancer therapy concepts often aim at the induction of adjuvant antitumor immunity or stimulation of tumor cell apoptosis. There is further evidence that combined application of immune stimulating and tumor apoptosis-inducing compounds elicits a synergistic antitumor effect. Here, we describe the development and characterization of bifunctional fusion proteins consisting of a single-chain variable fragment (scFv) domain derived from the CD40-specific monoclonal antibody G28-5 that is fused to the N-terminus of stabilized trimeric soluble variants of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). As shown before by us and others for other cell surface antigen-targeted scFv-TRAIL fusion proteins, scFv:G28-TRAIL displayed an enhanced capacity to induce apoptosis upon CD40 binding. Studies with scFv:G28 fusion proteins of TRAIL mutants that discriminate between the two TRAIL death receptors, TRAILR1 and TRAILR2, further revealed that the CD40 binding-dependent mode of apoptosis induction of scFv:G28-TRAIL is operable with each of the two TRAIL death receptors. Binding of scFv:G28-TRAIL fusion proteins to CD40 not only result in enhanced TRAIL death receptor signaling but also in activation of the targeted CD40 molecule. In accordance with the latter, the scFv:G28-TRAIL fusion proteins triggered strong CD40-mediated maturation of dendritic cells. The CD40-targeted TRAIL fusion proteins described in this study therefore represent a novel type of bifunctional fusion proteins that couple stimulation of antigen presenting cells and apoptosis induction.}, language = {en} } @phdthesis{Englert2020, author = {Englert, Anne}, title = {Modulation der Immunantwort humaner NK-Zellen nach Stimulation mit steigenden Konzentrationen von Aspergillus fumigatus}, doi = {10.25972/OPUS-20233}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit den antimykotischen Eigenschaften von NK-Zellen und dient der Charakterisierung der Immunantwort gegen{\"u}ber A. fumigatus in Abh{\"a}ngigkeit der MOI (Multiplizit{\"a}t der Infektion). Klinisch interessant ist dies bei immunsupprimierten Patienten mit invasiver Aspergillose. Anhand von Oberfl{\"a}chenmarkern konnten eine an die Pilzkonzentration angepasste Bindung und Aktivierung von NK-Zellen demonstriert werden. Daneben kam es zu einer Modulation der Freisetzung ausgew{\"a}hlter Zytokine nach Konfrontation mit steigenden Mengen von A. fumigatus. Besonders deutlich war der Effekt bei den Chemokinen CCL3 und CCL4, deren Zusammenhang mit Pilzinfektionen bereits gezeigt wurde. Die Ergebnisse zum MOI-abh{\"a}ngigen Verhalten von NK-Zellen gegen{\"u}ber A. fumigatus best{\"a}tigen die Relevanz bei der antimykotischen Immunantwort und verdeutlichen, weshalb ihnen zunehmende diagnostische und therapeutische Bedeutung zukommt.}, subject = {Nat{\"u}rliche Killerzelle}, language = {de} }