@article{SattlerNosterBrunkeetal.2021, author = {Sattler, Janko and Noster, Janina and Brunke, Anne and Plum, Georg and Wiegel, Pia and Kurzai, Oliver and Meis, Jacques F. and Hamprecht, Axel}, title = {Comparison of two commercially available qPCR kits for the detection of Candida auris}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228879}, year = {2021}, abstract = {Candida auris is an emerging pathogen with resistance to many commonly used antifungal agents. Infections with C. auris require rapid and reliable detection methods to initiate successful medical treatment and contain hospital outbreaks. Conventional identification methods are prone to errors and can lead to misidentifications. PCR-based assays, in turn, can provide reliable results with low turnaround times. However, only limited data are available on the performance of commercially available assays for C. auris detection. In the present study, the two commercially available PCR assays AurisID (OLM, Newcastle Upon Tyne, UK) and Fungiplex Candida Auris RUO Real-Time PCR (Bruker, Bremen, Germany) were challenged with 29 C. auris isolates from all five clades and eight other Candida species as controls. AurisID reliably detected C. auris with a limit of detection (LoD) of 1 genome copies/reaction. However, false positive results were obtained with high DNA amounts of the closely related species C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. The Fungiplex Candida Auris RUO Real-Time PCR kit detected C. auris with an LoD of 9 copies/reaction. No false positive results were obtained with this assay. In addition, C. auris could also be detected in human blood samples spiked with pure fungal cultures by both kits. In summary, both kits could detect C. auris-DNA at low DNA concentrations but differed slightly in their limits of detection and specificity.}, language = {en} } @article{SpringerWaltherRickertsetal.2019, author = {Springer, Jan and Walther, Grit and Rickerts, Volker and Hamprecht, Axel and Willinger, Birgit and Teschner, Daniel and Einsele, Hermann and Kurzai, Oliver and Loeffler, Juergen}, title = {Detection of Fusarium Species in Clinical Specimens by Probe-Based Real-Time PCR}, series = {Journal of Fungi}, volume = {5}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof5040105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193111}, pages = {105}, year = {2019}, abstract = {The mold Fusarium is a ubiquitous fungus causing plant, animal and human infections. In humans, Fusarium spp. are the major cause of eye infections in patients wearing contact lenses or after local trauma. Systemic infections by Fusarium spp. mainly occur in immunosuppressed patients and can disseminate throughout the human body. Due to high levels of resistance to antifungals a fast identification of the causative agent is an urgent need. By using a probe-based real-time PCR assay specific for the genus Fusarium we analysed several different clinical specimens detecting Fusarium spp. commonly found in clinical samples in Germany. Also, a large collection of lung fluid samples of haematological patients was analysed (n = 243). In these, two samples (0.8\%) were reproducibly positive, but only one could be confirmed by sequencing. For this case of probable invasive fungal disease (IFD) culture was positive for Fusarium species. Here we describe a rapid, probe-based real-time PCR assay to specifically detect DNA from a broad range of Fusarium species and its application to clinically relevant specimens.}, language = {en} }