@article{BrehmKoziolRauschendorferetal.2014, author = {Brehm, Klaus and Koziol, Uriel and Rauschendorfer, Theresa and Rodr{\´i}guez, Luis Zanon and Krohne, Georg}, title = {The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis}, doi = {10.1186/2041-9139-5-10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110315}, year = {2014}, abstract = {Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae.}, language = {en} } @phdthesis{Pasquet2014, author = {Pasquet, Vivian}, title = {Characterization of thioredoxin and glutathione reductase activities of Mesocestoides vogae, a flatworm parasite useful as a laboratory model for the screening of drugs.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106759}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Flatworm parasites (platyhelminths) cause serious infection diseases in humans, such as schistosomiasis and hydatid disease, mainly prevalent in developing countries. However, the current repertoire of drug armamentarium used to combat flatworm infections is limited. For instance, praziquantel is the only drug available for mass treatment of Schistosoma infections. In contrast to their hosts, flatworm parasites possess a distinct redox arrangement of redox pathways in which the selenoenzyme thioredoxin glutathione reductase (TGR) controls the overall redox homeostasis. Interference with this enzyme leads to parasite death. Hence, this key redox enzyme seems to be a new promising drug target against flatworm infections. Because most flatworms are difficult to cultivate in the laboratory (e.g. Echinococcus granulosus experimental infection in mice takes about 10 month to develop into cysts), this work was focused on Mesocestoides vogae (syn. corti), a non-human flatworm parasite which is an interesting laboratory model to study other flatworm infections: it is very rare in humans, can be easily manipulated both in vivo and in vitro and grows extremely fast in mice. With the aim to assess TGR inhibitors as possible drugs to treat flatworm infections, the thioredoxin and glutathione pathways of M.vogae were studied. Here, the objectives were to study whether the biochemical pathways that maintain the redox homeostasis in M. vogae conform to the general biochemical scenario proposed for other platyhelminth parasites. Here, it was proven that M. vogae extracts possess both thioredoxin and glutathione reductase activities. The thioredoxin and glutathione reductase activities were partially purified from total extracts by a combination of ammonium sulfate precipitation, anion exchange and hydroxyapatite chromatography. Both activities co-purified in all steps which strongly indicates the existence of TGR rather than a single TR and GR. Furthermore partially purified activities could be inhibited by the organogold compound auranofin, a known TGR inhibitor. Moreover, the glutathione reductase activity displays hysteresis (a peculiar kinetic behavior) at high concentrations of oxidised glutathione, a feature typical of flatworm TGRs, but not of conventional GR. Although M. vogae activities could not be purified to homogeneity, the overall results strongly indicate that this flatworm possesses TGR and lacks conventional GR and TR. Furthermore the thiadiazole WPQ75 and the N-oxide VL16E (a furoxan derivate) were identified as inhibitors of TGR activity of M.vogae at a 10 µM concentration. These inhibitors were able to kill M.vogae larval worms in vitro as well as in experimental infection in mice. Due to the existence of TGR activity in M.vogae, the possibility to inhibit this activity with recently discovered inhibitors of flatworm TGR and the successes achieved by testing these inhibitors both in vitro and in vivo, it is strongly evident that M. vogae would be an excellent model to assess TGR inhibitors in flatworm infections.}, subject = {Thioredoxin}, language = {en} } @phdthesis{Nono2012, author = {Nono, Justin}, title = {Immunomodulation through Excretory/Secretory Products of the parasitic Helminth Echinococcus multilocularis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85449}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Alveol{\"a}re Echinokokkose (AE) ist eine lebensbedrohliche Zoonose, die durch das Metazestoden-Larvenstadium des Fuchsbandwurms Echinococcus multilocularis ausgel{\"o}st wird. Nach Eintritt des Parasiten in den Zwischenwirt wird zun{\"a}chst eine potentiell anti-parasitische, Th1-dominierte Immunantwort ausgel{\"o}st, welche anschließend in der chronischen Phase graduell durch eine permissive, Th2-dominierte Antwort ersetzt wird. Als Ergebnis einer zugrunde liegenden Immunmodulation durch den Parasiten k{\"o}nnen Echinococcus-Larven f{\"u}r Jahre bis Jahrzehnte im Wirt persistieren und verhalten sich {\"a}hnlich einem perfekt transplantierten Organ. {\"U}ber die molekulare Basis der Immunmodulation durch den Parasiten ist derzeit wenig bekannt. In dieser Arbeit wurden geeignete Kultursysteme f{\"u}r verschiedene E. multilocularis Larvenstadien verwendet, um den Einfluss exkretorisch/sekretorischer Metaboliten (E/S-Produkte) auf Wirts-Immuneffektor-Zellen zu studieren. E/S-Produkte kultivierter Larven, die die fr{\"u}he (Prim{\"a}rzellen) und chronische (Metazestode) Phase der Infektion repr{\"a}sentieren induzierten Apoptose und tolerogene Eigenschaften in Dendritischen Zellen (DC) des Wirts, w{\"a}hrend solche von Kontroll-Larven (Protoskolizes) keine derartigen Effekte zeigten. Dies zeigt, dass die fr{\"u}hen infekti{\"o}sen Stadien von E. multilocularis in DC ein tolerierendes Milieu erzeugen, welches sehr wahrscheinlich die initiale Etablierung des Parasiten in einer Phase beg{\"u}nstigt, in der er h{\"o}chst sensitiv gegen{\"u}ber Wirtsangriffen ist. Interessanterweise f{\"o}rderten E/S-Produkte des Metazestoden in vitro die Konversion von CD4+ T-Zellen in Foxp3+, regulatorische T-Zellen (Treg) w{\"a}hrend E/S-Produkte von Prim{\"a}rzellen oder Protoskolizes dies nicht vermochten. Da Foxp3+ Tregs generell als immunosuppressorisch bekannt sind, deuten diese Daten an, dass der Metazestode aktiv eine Induktion von Tregs herbeif{\"u}hrt, um eine permissive Immunsuppression w{\"a}hrend einer Infektion zu erreichen. Eine substantielle Zunahme von Anzahl und Frequenz Foxp3+ Tregs konnte zudem in Peritoneal-Exsudaten von M{\"a}uuen nach intraperitonealer Injektion von Parasitengewebe gemessen werden, was anzeigt, dass eine Expansion von Foxp3+ Tregs auch w{\"a}hrend der in vivo Infektion von Bedeutung ist. Interessanterweise konnte in dieser Arbeit ein Activin-Orthologes des Parasiten, EmACT, identifiziert werden, weleches vom Metazestoden sekretiert wird und {\"a}hnlich wie humanes Activin in der Lage ist, eine TGF-β-abh{\"a}ngige Expansion von Tregs in vitro zu induzieren. Dies zeigt an, dass E. multilocularis evolutionsgeschichtlich konservierte Zytokine nutzt, um aktiv die Wirts-Immunantwort zu beeinflussen. Zusammenfassend deuten die gewonnenen Daten auf eine wichtige Rolle Foxp3+ Tregs, welche u.a. durch EmACT induziert werden, im immunologischen geschehen der AE hin. Ein weiterer Parasiten-Faktor, EmTIP, mit signifikanten Homologien zum T-cell Immunomodulatory Protein (TIP) des Menschen wurde in dieser Arbeit n{\"a}her charakterisiert. EmTIP konnte in der E/S-Fraktion von Prim{\"a}rzellen nachgewiesen werden und induzierte die Freisetzung von IFN-γ in CD4+ T-Helferzellen. Durch Zugabe von anti-EmTIP-Antik{\"o}rpern konnte zudem die Entwicklung des Parasiten zum Metazestoden in vitro gehemmt werden. EmTIP d{\"u}rfte daher einerseits bei der fr{\"u}hen Parasiten-Entwicklung im Zwischenwirt eine Rolle spielen und k{\"o}nnte im Zuge dessen auch die Auspr{\"a}gung der fr{\"u}hen, Th-1-dominierten Immunantwort w{\"a}hrend der AE beg{\"u}nstigen. Zusammenfassend wurden in dieser Arbeit zwei E. multilocularis E/S-Faktoren identifiziert, EmACT und EmTIP, die ein hohes immunmodulatorisches Potential besitzen. Die hier vorgestellten Daten liefern neue, fundamentale Einsichten in die molekularen Mechanismen der Parasiten-induzierten Immunmodulation bei der AE und sind hoch relevant f{\"u}r die Entwicklung anti-parasitischer Immuntherapien.}, subject = {Immunmodulation}, language = {en} } @article{BrehmKoziolKrohne2013, author = {Brehm, Klaus and Koziol, Uriel and Krohne, Georg}, title = {Anatomy and development of the larval nervous system in Echinococcus multilocularis}, series = {Frontiers in Zoology}, journal = {Frontiers in Zoology}, doi = {10.1186/1742-9994-10-24}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96504}, year = {2013}, abstract = {Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.}, language = {en} } @article{EliasHeuschmannSchmittetal.2013, author = {Elias, Johannes and Heuschmann, Peter U. and Schmitt, Corinna and Eckhardt, Frithjof and Boehm, Hartmut and Maier, Sebastian and Kolb-M{\"a}urer, Annette and Riedmiller, Hubertus and M{\"u}llges, Wolfgang and Weisser, Christoph and Wunder, Christian and Frosch, Matthias and Vogel, Ulrich}, title = {Prevalence dependent calibration of a predictive model for nasal carriage of methicillin-resistant Staphylococcus aureus}, series = {BMC Infectious Diseases}, journal = {BMC Infectious Diseases}, doi = {10.1186/1471-2334-13-111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96091}, year = {2013}, abstract = {Background Published models predicting nasal colonization with Methicillin-resistant Staphylococcus aureus among hospital admissions predominantly focus on separation of carriers from non-carriers and are frequently evaluated using measures of discrimination. In contrast, accurate estimation of carriage probability, which may inform decisions regarding treatment and infection control, is rarely assessed. Furthermore, no published models adjust for MRSA prevalence. Methods Using logistic regression, a scoring system (values from 0 to 200) predicting nasal carriage of MRSA was created using a derivation cohort of 3091 individuals admitted to a European tertiary referral center between July 2007 and March 2008. The expected positive predictive value of a rapid diagnostic test (GeneOhm, Becton \& Dickinson Co.) was modeled using non-linear regression according to score. Models were validated on a second cohort from the same hospital consisting of 2043 patients admitted between August 2008 and January 2012. Our suggested correction score for prevalence was proportional to the log-transformed odds ratio between cohorts. Calibration before and after correction, i.e. accurate classification into arbitrary strata, was assessed with the Hosmer-Lemeshow-Test. Results Treating culture as reference, the rapid diagnostic test had positive predictive values of 64.8\% and 54.0\% in derivation and internal validation corhorts with prevalences of 2.3\% and 1.7\%, respectively. In addition to low prevalence, low positive predictive values were due to high proportion (> 66\%) of mecA-negative Staphylococcus aureus among false positive results. Age, nursing home residence, admission through the medical emergency department, and ICD-10-GM admission diagnoses starting with "A" or "J" were associated with MRSA carriage and were thus included in the scoring system, which showed good calibration in predicting probability of carriage and the rapid diagnostic test's expected positive predictive value. Calibration for both probability of carriage and expected positive predictive value in the internal validation cohort was improved by applying the correction score. Conclusions Given a set of patient parameters, the presented models accurately predict a) probability of nasal carriage of MRSA and b) a rapid diagnostic test's expected positive predictive value. While the former can inform decisions regarding empiric antibiotic treatment and infection control, the latter can influence choice of screening method.}, language = {en} } @article{EliasFindlowBorrowetal.2013, author = {Elias, Johannes and Findlow, Jamie and Borrow, Ray and Tremmel, Angelika and Frosch, Matthias and Vogel, Ulrich}, title = {Persistence of antibodies in laboratory staff immunized with quadrivalent meningococcal polysaccharide vaccine}, series = {Journal of Occupational Medicine and Toxicology}, journal = {Journal of Occupational Medicine and Toxicology}, doi = {10.1186/1745-6673-8-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95953}, year = {2013}, abstract = {Background Occupational exposure to live meningococci can potentially cause invasive meningococcal disease in laboratory staff. While, until recently, immunization with quadrivalent polysaccharide vaccine represented one cornerstone of protection, data on long-term persistence of antibodies in adults remain scarce. Methods We analyzed the relationship of antibody levels and time following quadrivalent polysaccharide vaccination (Mencevax® ACWY, GlaxoSmithKline) in a cross-sectional sample of 20 laboratory workers vaccinated at ages between 16.4 to 40.7 years from Germany. Sera were obtained 0.4 to 158.5 (median 35.3) months after vaccination. At the time of sampling, laboratory workers had been regularly exposed to meningococci for periods between 3.2 to 163.8 (median 41.2) months. Serum bactericidal assay (SBA) with rabbit complement and a microsphere-based flow analysis method were used to determine bactericidal titers and concentrations of IgG, respectively, against serogroups A, C, W135, and Y. Decay of antibodies was modeled using linear regression. Protective levels were defined as SBA titers ≥ 8. Results Half-lives of SBA titers against serogroups A, C, W135, and Y were estimated at 27.4, 21.9, 18.8, and 28.0 months, respectively. Average durations of protection were estimated at 183.9, 182.0, 114.6, and 216.4 months, respectively. Inter-individual variation was high; using lower margins of 95\% prediction intervals, minimal durations of protection against serogroups A, C, W135 and Y were estimated at 33.5, 24.6, 0.0, and 55.1 months, respectively. The proportion of staff with protective SBA titers against W135 (65.0\%) was significantly lower than proportions protected against A (95.0\%), C (94.7\%), and Y (95.0\%). Consistently, geometric mean titer (97.0) and geometric mean concentration of IgG (2.1 μg/ml) was lowest against serogroup W135. SBA titers in a subset of individuals with incomplete protection rose to ≥ 128 (≥ 8 fold) after reimmunization with a quadrivalent glycoconjugate vaccine. Conclusions The average duration of protection following immunization with a quadrivalent polysaccharide vaccine in adults was ≥ 115 months regardless of serogroup. A substantial proportion (approximately 23\% according to our decay model) of adult vaccinees may not retain protection against serogroup W135 for five years, the time suggested for reimmunization.}, language = {en} } @phdthesis{Pawlik2013, author = {Pawlik, Marie-Christin}, title = {Gene expression in the human pathogen Neisseria meningitidis: Adaptation to serum exposure and zinc limitation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Neisseria meningitidis is a facultative human pathogen that occasionally shows strong resistance against serum complement exposure. Previously described factors that mediate meningococcal serum resistance are for example the capsule, LPS sialylation, and expression of the factor H binding protein. I aimed for identification of novel serum resistance factors, thereby following two approaches, i) the analysis of the impact of global regulators of gene expression on serum resistance; and ii) a comparative analysis of closely related strains differing in serum resistance. (i) Of six meningococcal global regulators of gene expression studied, only mutation of the zinc uptake regulator Zur reduced complement deposition on meningococci. Little was known about meningococcal Zur and regulatory processes in response to zinc. I therefore elucidated the yet unidentified meningococcal Zur regulon comparing the transcriptional response of the N. meningitidis strain MC58 under zinc-rich and zinc-deficient conditions using a common reference design of microarray analysis. The meningococcal Zur regulon comprises 17 genes, of which 15 genes were repressed and two genes were activated at high zinc condition. Amongst the Zur-repressed genes were genes involved in zinc uptake, tRNA modification, and ribosomal assembly. A 23 bp meningococcal consensus Zur binding motif (Zur box) with a conserved central palindrome was established (TGTTATDNHATAACA) and detected in the promoter region of all regulated transcriptional units (genes/operons). In vitro binding of meningococcal Zur to the Zur box of three selected genes was shown for the first time using EMSAs. Binding of meningococcal Zur to DNA depended specifically on zinc, and mutations in the palindromic sequence constrained Zur binding to the DNA motif. ii) Three closely related strains of ST-41/44 cc from invasive disease and carriage which differed in their resistance to serum complement exposure were analysed to identify novel mediators of serum resistance. I compared the strains' gene content by microarray analysis which revealed six genes being present in both carrier isolates, but absent in the invasive isolate. Four of them are part of two Islands of horizontally transferred DNA, i.e. IHT-B and -C. The working group furthermore applied a comprehensive screening assay, a transcriptome and a proteome analysis leading to identification of three target proteins. I contributed to establish the role of these three proteins in serum resistance: The adhesin Opc mediates serum resistance by binding of vitronectin, a negative regulator of the complement system; the hypothetical protein NMB0865 slightly contributes to serum resistance by a yet unknown mechanism; and NspA, recently identified to bind the negative complement regulator factor H, led to considerable reduced complement-mediated killing.}, subject = {Komplement }, language = {en} } @article{SlaninaHeblingHaucketal.2012, author = {Slanina, Heiko and Hebling, Sabrina and Hauck, Christoph R. and Schubert-Unkmeir, Alexandra}, title = {Cell Invasion by Neisseria meningitidis Requires a Functional Interplay between the Focal Adhesion Kinase, Src and Cortactin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75354}, year = {2012}, abstract = {Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90\%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells.}, subject = {Medizin}, language = {en} } @phdthesis{Hemer2012, author = {Hemer, Sarah}, title = {Molecular characterization of evolutionarily conserved signaling systems of Echinococcus multilocularis and their utilization for the development of novel drugs against Echinococosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74007}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Alveolar echinococcosis (AE), a severe and life-threatening disease is caused by the small fox tapeworm Echinococcus multilocularis. Currently, the options of chemotherapeutic treatment are very limited and are based on benzimidazole compounds, which act merely parasitostatic in vivo and often display strong side effects. Therefore, new therapeutic drugs and targets are urgently needed. In the present work the role of two evolutionarily conserved signalling pathways in E. multilocularis, namely the insulin signalling cascade and Abl kinases, has been studied in regard to host-parasite interaction and the possible use in anti-AE chemotherapy.}, subject = {Fuchsbandwurm}, language = {en} } @article{EliasSchoulsvandePoletal.2010, author = {Elias, Johannes and Schouls, Leo M. and van de Pol, Ingrid and Keijzers, Wendy C. and Martin, Diana R. and Glennie, Anne and Oster, Philipp and Frosch, Matthias and Vogel, Ulrich and van der Ende, Arie}, title = {Vaccine Preventability of Meningococcal Clone, Greater Aachen Region, Germany}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68083}, year = {2010}, abstract = {No abstract available}, subject = {IMD}, language = {en} }