@article{LiGuanGaoetal.2020, author = {Li, Ningbo and Guan, Lianwu and Gao, Yanbin and Du, Shitong and Wu, Menghao and Guang, Xingxing and Cong, Xiaodan}, title = {Indoor and outdoor low-cost seamless integrated navigation system based on the integration of INS/GNSS/LIDAR system}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs12193271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216229}, year = {2020}, abstract = {Global Navigation Satellite System (GNSS) provides accurate positioning data for vehicular navigation in open outdoor environment. In an indoor environment, Light Detection and Ranging (LIDAR) Simultaneous Localization and Mapping (SLAM) establishes a two-dimensional map and provides positioning data. However, LIDAR can only provide relative positioning data and it cannot directly provide the latitude and longitude of the current position. As a consequence, GNSS/Inertial Navigation System (INS) integrated navigation could be employed in outdoors, while the indoors part makes use of INS/LIDAR integrated navigation and the corresponding switching navigation will make the indoor and outdoor positioning consistent. In addition, when the vehicle enters the garage, the GNSS signal will be blurred for a while and then disappeared. Ambiguous GNSS satellite signals will lead to the continuous distortion or overall drift of the positioning trajectory in the indoor condition. Therefore, an INS/LIDAR seamless integrated navigation algorithm and a switching algorithm based on vehicle navigation system are designed. According to the experimental data, the positioning accuracy of the INS/LIDAR navigation algorithm in the simulated environmental experiment is 50\% higher than that of the Dead Reckoning (DR) algorithm. Besides, the switching algorithm developed based on the INS/LIDAR integrated navigation algorithm can achieve 80\% success rate in navigation mode switching.}, language = {en} } @article{KrupitzerEberhardingerGerostathopoulosetal.2020, author = {Krupitzer, Christian and Eberhardinger, Benedikt and Gerostathopoulos, Ilias and Raibulet, Claudia}, title = {Introduction to the special issue "Applications in Self-Aware Computing Systems and their Evaluation"}, series = {Computers}, volume = {9}, journal = {Computers}, number = {1}, issn = {2073-431X}, doi = {10.3390/computers9010022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203439}, year = {2020}, abstract = {The joint 1st Workshop on Evaluations and Measurements in Self-Aware Computing Systems (EMSAC 2019) and Workshop on Self-Aware Computing (SeAC) was held as part of the FAS* conference alliance in conjunction with the 16th IEEE International Conference on Autonomic Computing (ICAC) and the 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) in Ume{\aa}, Sweden on 20 June 2019. The goal of this one-day workshop was to bring together researchers and practitioners from academic environments and from the industry to share their solutions, ideas, visions, and doubts in self-aware computing systems in general and in the evaluation and measurements of such systems in particular. The workshop aimed to enable discussions, partnerships, and collaborations among the participants. This special issue follows the theme of the workshop. It contains extended versions of workshop presentations as well as additional contributions.}, language = {en} } @article{HossfeldHeegaardSkrorinKapovetal.2020, author = {Hoßfeld, Tobias and Heegaard, Poul E. and Skrorin-Kapov, Lea and Varela, Mart{\´i}n}, title = {Deriving QoE in systems: from fundamental relationships to a QoE-based Service-level Quality Index}, series = {Quality and User Experience}, volume = {5}, journal = {Quality and User Experience}, issn = {2366-0139}, doi = {10.1007/s41233-020-00035-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235597}, year = {2020}, abstract = {With Quality of Experience (QoE) research having made significant advances over the years, service and network providers aim at user-centric evaluation of the services provided in their system. The question arises how to derive QoE in systems. In the context of subjective user studies conducted to derive relationships between influence factors and QoE, user diversity leads to varying distributions of user rating scores for different test conditions. Such models are commonly exploited by providers to derive various QoE metrics in their system, such as expected QoE, or the percentage of users rating above a certain threshold. The question then becomes how to combine (a) user rating distributions obtained from subjective studies, and (b) system parameter distributions, so as to obtain the actual observed QoE distribution in the system? Moreover, how can various QoE metrics of interest in the system be derived? We prove fundamental relationships for the derivation of QoE in systems, thus providing an important link between the QoE community and the systems community. In our numerical examples, we focus mainly on QoE metrics. We furthermore provide a more generalized view on quantifying the quality of systems by defining a QoE-based Service-level Quality Index. This index exploits the fact that quality can be seen as a proxy measure for utility. Following the assumption that not all user sessions should be weighted equally, we aim to provide a generic framework that can be utilized to quantify the overall utility of a service delivered by a system.}, language = {en} } @article{BorchertSeufertGamboaetal.2020, author = {Borchert, Kathrin and Seufert, Anika and Gamboa, Edwin and Hirth, Matthias and Hoßfeld, Tobias}, title = {In Vitro vs In Vivo: Does the Study's Interface Design Influence Crowdsourced Video QoE?}, series = {Quality and User Experience}, volume = {6}, journal = {Quality and User Experience}, issn = {2366-0139}, doi = {10.1007/s41233-020-00041-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235586}, year = {2020}, abstract = {Evaluating the Quality of Experience (QoE) of video streaming and its influence factors has become paramount for streaming providers, as they want to maintain high satisfaction for their customers. In this context, crowdsourced user studies became a valuable tool to evaluate different factors which can affect the perceived user experience on a large scale. In general, most of these crowdsourcing studies either use, what we refer to, as an in vivo or an in vitro interface design. In vivo design means that the study participant has to rate the QoE of a video that is embedded in an application similar to a real streaming service, e.g., YouTube or Netflix. In vitro design refers to a setting, in which the video stream is separated from a specific service and thus, the video plays on a plain background. Although these interface designs vary widely, the results are often compared and generalized. In this work, we use a crowdsourcing study to investigate the influence of three interface design alternatives, an in vitro and two in vivo designs with different levels of interactiveness, on the perceived video QoE. Contrary to our expectations, the results indicate that there is no significant influence of the study's interface design in general on the video experience. Furthermore, we found that the in vivo design does not reduce the test takers' attentiveness. However, we observed that participants who interacted with the test interface reported a higher video QoE than other groups.}, language = {en} } @article{DuekingHolmbergKunzetal.2020, author = {D{\"u}king, Peter and Holmberg, Hans‑Christer and Kunz, Philipp and Leppich, Robert and Sperlich, Billy}, title = {Intra-individual physiological response of recreational runners to different training mesocycles: a randomized cross-over study}, series = {European Journal of Applied Physiology}, volume = {120}, journal = {European Journal of Applied Physiology}, issn = {1439-6319}, doi = {10.1007/s00421-020-04477-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235022}, pages = {2705-2713}, year = {2020}, abstract = {Purpose Pronounced differences in individual physiological adaptation may occur following various training mesocycles in runners. Here we aimed to assess the individual changes in performance and physiological adaptation of recreational runners performing mesocycles with different intensity, duration and frequency. Methods Employing a randomized cross-over design, the intra-individual physiological responses [i.e., peak (\(\dot{VO}_{2peak}\)) and submaximal (\(\dot{VO}_{2submax}\)) oxygen uptake, velocity at lactate thresholds (V\(_2\), V\(_4\))] and performance (time-to-exhaustion (TTE)) of 13 recreational runners who performed three 3-week sessions of high-intensity interval training (HIIT), high-volume low-intensity training (HVLIT) or more but shorter sessions of HVLIT (high-frequency training; HFT) were assessed. Results \(\dot{VO}_{2submax}\), V\(_2\), V\(_4\) and TTE were not altered by HIIT, HVLIT or HFT (p > 0.05). \(\dot{VO}_{2peak}\) improved to the same extent following HVLIT (p = 0.045) and HFT (p = 0.02). The number of moderately negative responders was higher following HIIT (15.4\%); and HFT (15.4\%) than HVLIT (7.6\%). The number of very positive responders was higher following HVLIT (38.5\%) than HFT (23\%) or HIIT (7.7\%). 46\% of the runners responded positively to two mesocycles, while 23\% did not respond to any. Conclusion On a group level, none of the interventions altered \(\dot{VO}_{2submax}\), V\(_2\), V\(_4\) or TTE, while HVLIT and HFT improved \(\dot{VO}_{2peak}\). The mean adaptation index indicated similar numbers of positive, negative and non-responders to HIIT, HVLIT and HFT, but more very positive responders to HVLIT than HFT or HIIT. 46\% responded positively to two mesocycles, while 23\% did not respond to any. These findings indicate that the magnitude of responses to HIIT, HVLIT and HFT is highly individual and no pattern was apparent.}, language = {en} } @article{StauffertNieblingLatoschik2020, author = {Stauffert, Jan-Philipp and Niebling, Florian and Latoschik, Marc Erich}, title = {Latency and Cybersickness: Impact, Causes, and Measures. A Review}, series = {Frontiers in Virtual Reality}, volume = {1}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2020.582204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236133}, year = {2020}, abstract = {Latency is a key characteristic inherent to any computer system. Motion-to-Photon (MTP) latency describes the time between the movement of a tracked object and its corresponding movement rendered and depicted by computer-generated images on a graphical output screen. High MTP latency can cause a loss of performance in interactive graphics applications and, even worse, can provoke cybersickness in Virtual Reality (VR) applications. Here, cybersickness can degrade VR experiences or may render the experiences completely unusable. It can confound research findings of an otherwise sound experiment. Latency as a contributing factor to cybersickness needs to be properly understood. Its effects need to be analyzed, its sources need to be identified, good measurement methods need to be developed, and proper counter measures need to be developed in order to reduce potentially harmful impacts of latency on the usability and safety of VR systems. Research shows that latency can exhibit intricate timing patterns with various spiking and periodic behavior. These timing behaviors may vary, yet most are found to provoke cybersickness. Overall, latency can differ drastically between different systems interfering with generalization of measurement results. This review article describes the causes and effects of latency with regard to cybersickness. We report on different existing approaches to measure and report latency. Hence, the article provides readers with the knowledge to understand and report latency for their own applications, evaluations, and experiments. It should also help to measure, identify, and finally control and counteract latency and hence gain confidence into the soundness of empirical data collected by VR exposures. Low latency increases the usability and safety of VR systems.}, language = {en} } @article{KramerBangertSchilling2020, author = {Kramer, Alexander and Bangert, Philip and Schilling, Klaus}, title = {UWE-4: First Electric Propulsion on a 1U CubeSat — In-Orbit Experiments and Characterization}, series = {Aerospace}, volume = {7}, journal = {Aerospace}, number = {7}, doi = {10.3390/aerospace7070098}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236124}, year = {2020}, abstract = {The electric propulsion system NanoFEEP was integrated and tested in orbit on the UWE-4 satellite, which marks the first successful demonstration of an electric propulsion system on board a 1U CubeSat. In-orbit characterization measurements of the heating process of the propellant and the power consumption of the propulsion system at different thrust levels are presented. Furthermore, an analysis of the thrust vector direction based on its effect on the attitude of the spacecraft is described. The employed heater liquefies the propellant for a duration of 30 min per orbit and consumes 103 ± 4 mW. During this time, the respective thruster can be activated. The propulsion system including one thruster head, its corresponding heater, the neutralizer and the digital components of the power processing unit consume 8.5 ± 0.1 mW ⋅μ A\(^{-1}\) + 184 ± 8.5 mW and scales with the emitter current. The estimated thrust directions of two thruster heads are at angles of 15.7 ± 7.6∘ and 13.2 ± 5.5∘ relative to their mounting direction in the CubeSat structure. In light of the very limited power on a 1U CubeSat, the NanoFEEP propulsion system renders a very viable option. The heater of subsequent NanoFEEP thrusters was already improved, such that the system can be activated during the whole orbit period.}, language = {en} } @article{FreyGassenmaierHofmannetal.2020, author = {Frey, Anna and Gassenmaier, Tobias and Hofmann, Ulrich and Schmitt, Dominik and Fette, Georg and Marx, Almuth and Heterich, Sabine and Boivin-Jahns, Val{\´e}rie and Ertl, Georg and Bley, Thorsten and Frantz, Stefan and Jahns, Roland and St{\"o}rk, Stefan}, title = {Coagulation factor XIII activity predicts left ventricular remodelling after acute myocardial infarction}, series = {ESC Heart Failure}, volume = {7}, journal = {ESC Heart Failure}, number = {5}, doi = {10.1002/ehf2.12774}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236013}, pages = {2354-2364}, year = {2020}, abstract = {Aims Acute myocardial infarction (MI) is the major cause of chronic heart failure. The activity of blood coagulation factor XIII (FXIIIa) plays an important role in rodents as a healing factor after MI, whereas its role in healing and remodelling processes in humans remains unclear. We prospectively evaluated the relevance of FXIIIa after acute MI as a potential early prognostic marker for adequate healing. Methods and results This monocentric prospective cohort study investigated cardiac remodelling in patients with ST-elevation MI and followed them up for 1 year. Serum FXIIIa was serially assessed during the first 9 days after MI and after 2, 6, and 12 months. Cardiac magnetic resonance imaging was performed within 4 days after MI (Scan 1), after 7 to 9 days (Scan 2), and after 12 months (Scan 3). The FXIII valine-to-leucine (V34L) single-nucleotide polymorphism rs5985 was genotyped. One hundred forty-six patients were investigated (mean age 58 ± 11 years, 13\% women). Median FXIIIa was 118 \% (quartiles, 102-132\%) and dropped to a trough on the second day after MI: 109\%(98-109\%; P < 0.001). FXIIIa recovered slowly over time, reaching the baseline level after 2 to 6 months and surpassed baseline levels only after 12 months: 124 \% (110-142\%). The development of FXIIIa after MI was independent of the genotype. FXIIIa on Day 2 was strongly and inversely associated with the relative size of MI in Scan 1 (Spearman's ρ = -0.31; P = 0.01) and Scan 3 (ρ = -0.39; P < 0.01) and positively associated with left ventricular ejection fraction: ρ = 0.32 (P < 0.01) and ρ = 0.24 (P = 0.04), respectively. Conclusions FXIII activity after MI is highly dynamic, exhibiting a significant decline in the early healing period, with reconstitution 6 months later. Depressed FXIIIa early after MI predicted a greater size of MI and lower left ventricular ejection fraction after 1 year. The clinical relevance of these findings awaits to be tested in a randomized trial.}, language = {en} } @article{LopezArreguinMontenegro2020, author = {Lopez-Arreguin, A. J. R. and Montenegro, S.}, title = {Towards bio-inspired robots for underground and surface exploration in planetary environments: An overview and novel developments inspired in sand-swimmers}, series = {Heliyon}, volume = {6}, journal = {Heliyon}, doi = {10.1016/j.heliyon.2020.e04148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230309}, year = {2020}, abstract = {Dessert organisms like sandfish lizards (SLs) bend and generate thrust in granular mediums to scape heat and hunt for prey [1]. Further, SLs seems to have striking capabilities to swim in undulatory form keeping the same wavelength even in terrains with different volumetric densities, hence behaving as rigid bodies. This paper tries to recommend new research directions for planetary robotics, adapting principles of sand swimmers for improving robustness of surface exploration robots. First, we summarize previous efforts on bio-inspired hardware developed for granular terrains and accessing complex geological features. Later, a rigid wheel design has been proposed to imitate SLs locomotion capabilities. In order to derive the force models to predict performance of such bio-inspired mobility system, different approaches as RFT (Resistive Force Theory) and analytical terramechanics are introduced. Even in typical wheeled robots the slip and sinkage increase with time, the new design intends to imitate traversability capabilities of SLs, that seem to keep the same slip while displacing at subsurface levels.}, language = {en} } @article{KrupitzerTemizerPrantletal.2020, author = {Krupitzer, Christian and Temizer, Timur and Prantl, Thomas and Raibulet, Claudia}, title = {An Overview of Design Patterns for Self-Adaptive Systems in the Context of the Internet of Things}, series = {IEEE Access}, volume = {8}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2020.3031189}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229984}, pages = {187384-187399}, year = {2020}, abstract = {The Internet of Things (IoT) requires the integration of all available, highly specialized, and heterogeneous devices, ranging from embedded sensor nodes to servers in the cloud. The self-adaptive research domain provides adaptive capabilities that can support the integration in IoT systems. However, developing such systems is a challenging, error-prone, and time-consuming task. In this context, design patterns propose already used and optimized solutions to specific problems in various contexts. Applying design patterns might help to reuse existing knowledge about similar development issues. However, so far, there is a lack of taxonomies on design patterns for self-adaptive systems. To tackle this issue, in this paper, we provide a taxonomy on design patterns for self-adaptive systems that can be transferred to support adaptivity in IoT systems. Besides describing the taxonomy and the design patterns, we discuss their applicability in an Industrial IoT case study.}, language = {en} }