@article{MaurerHuppBischoffetal.2017, author = {Maurer, Jana and Hupp, Sabrina and Bischoff, Carolin and Foertsch, Christina and Mitchell, Timothy J. and Chakraborty, Trinad and Iliev, Asparouh I.}, title = {Distinct neurotoxicity profile of listeriolysin O from \(Listeria\) \(monocytogenes\)}, series = {Toxins}, volume = {9}, journal = {Toxins}, number = {1}, doi = {10.3390/toxins9010034}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172130}, year = {2017}, abstract = {Cholesterol-dependent cytolysins (CDCs) are protein toxins that originate from Gram-positive bacteria and contribute substantially to their pathogenicity. CDCs bind membrane cholesterol and build prepores and lytic pores. Some effects of the toxins are observed in non-lytic concentrations. Two pathogens, \(Streptococcus\) \(pneumoniae\) and \(Listeria\) \(monocytogenes\), cause fatal bacterial meningitis, and both produce toxins of the CDC family—pneumolysin and listeriolysin O, respectively. It has been demonstrated that pneumolysin produces dendritic varicosities (dendrite swellings) and dendritic spine collapse in the mouse neocortex, followed by synaptic loss and astrocyte cell shape remodeling without elevated cell death. We utilized primary glial cultures and acute mouse brain slices to examine the neuropathological effects of listeriolysin O and to compare it to pneumolysin with identical hemolytic activity. In cultures, listeriolysin O permeabilized cells slower than pneumolysin did but still initiated non-lytic astrocytic cell shape changes, just as pneumolysin did. In an acute brain slice culture system, listeriolysin O produced dendritic varicosities in an NMDA-dependent manner but failed to cause dendritic spine collapse and cortical astrocyte reorganization. Thus, listeriolysin O demonstrated slower cell permeabilization and milder glial cell remodeling ability than did pneumolysin and lacked dendritic spine collapse capacity but exhibited equivalent dendritic pathology.}, language = {en} } @article{WippelMaurerFortschetal.2013, author = {Wippel, Carolin and Maurer, Jana and Fortsch, Christina and Hupp, Sabrina and Bohl, Alexandra and Ma, Jiangtao and Mitchell, Timothy J. and Bunkowski, Stephanie and Br{\"u}ck, Wolfgang and Nau, Roland and Iliev, Asparouh I.}, title = {Bacterial Cytolysin during Meningitis Disrupts the Regulation of Glutamate in the Brain, Leading to Synaptic Damage}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1003380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130462}, pages = {e1003380}, year = {2013}, abstract = {Abstract Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. Author Summary Bacterial meningitis is one of the most devastating brain diseases. Among the bacteria that cause meningitis, Streptococcus pneumoniae is the most common. Meningitis predominantly affects children, especially in the Third World, and most of them do not survive. Those that do survive often suffer permanent brain damage and hearing problems. The exact morphological substrates of brain damage in Streptococcus pneumoniae meningitis remain largely unknown. In our experiments, we found that the brain cortex of patients with meningitis demonstrated a loss of synapses (the contact points among neurons, responsible for the processes of learning and memory), and we identified the major pneumococcal neurotoxin pneumolysin as a sufficient cause of this loss. The effect was not direct but was mediated by the brain neurotransmitter glutamate, which was released upon toxin binding by one of the non-neuronal cell types of the brain - the astrocytes. Pneumolysin initiated calcium influx in astrocytes and subsequent glutamate release. Glutamate damaged the synapses via NMDA-receptors - a mechanism similar to the damage occurring in brain ischemia. Thus, we show that synaptic loss is present in pneumococcal meningitis, and we identify the toxic bacterial protein pneumolysin as the major factor in this process. These findings alter our understanding of bacterial meningitis and establish new therapeutic strategies for this fatal disease.}, language = {en} }