@article{SollfrankHartGoodselletal.2015, author = {Sollfrank, Teresa and Hart, Daniel and Goodsell, Rachel and Foster, Jonathan and Tan, Tele}, title = {3D visualization of movements can amplify motor cortex activation during subsequent motor imagery}, series = {Frontiers in Human Neuroscience}, volume = {9}, journal = {Frontiers in Human Neuroscience}, number = {463}, doi = {10.3389/fnhum.2015.00463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126058}, year = {2015}, abstract = {A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.}, language = {en} } @article{SimonKaethnerRufetal.2015, author = {Simon, Nadine and K{\"a}thner, Ivo and Ruf, Carolin A. and Pasqualotto, Emanuele and K{\"u}bler, Andrea and Halder, Sebastian}, title = {An auditory multiclass brain-computer interface with natural stimuli: Usability evaluation with healthy participants and a motor impaired end user}, series = {Frontiers in Human Neuroscience}, volume = {8}, journal = {Frontiers in Human Neuroscience}, number = {1039}, doi = {10.3389/fnhum.2014.01039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126450}, year = {2015}, abstract = {Brain-computer interfaces (BCIs) can serve as muscle independent communication aids. Persons, who are unable to control their eye muscles (e.g., in the completely locked-in state) or have severe visual impairments for other reasons, need BCI systems that do not rely on the visual modality. For this reason, BCIs that employ auditory stimuli were suggested. In this study, a multiclass BCI spelling system was implemented that uses animal voices with directional cues to code rows and columns of a letter matrix. To reveal possible training effects with the system, 11 healthy participants performed spelling tasks on 2 consecutive days. In a second step, the system was tested by a participant with amyotrophic lateral sclerosis (ALS) in two sessions. In the first session, healthy participants spelled with an average accuracy of 76\% (3.29 bits/min) that increased to 90\% (4.23 bits/min) on the second day. Spelling accuracy by the participant with ALS was 20\% in the first and 47\% in the second session. The results indicate a strong training effect for both the healthy participants and the participant with ALS. While healthy participants reached high accuracies in the first session and second session, accuracies for the participant with ALS were not sufficient for satisfactory communication in both sessions. More training sessions might be needed to improve spelling accuracies. The study demonstrated the feasibility of the auditory BCI with healthy users and stresses the importance of training with auditory multiclass BCIs, especially for potential end-users of BCI with disease.}, language = {en} } @article{AndreattaPauli2015, author = {Andreatta, Marta and Pauli, Paul}, title = {Appetitive vs. aversive conditioning in humans}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {128}, doi = {10.3389/fnbeh.2015.00128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148614}, year = {2015}, abstract = {In classical conditioning, an initially neutral stimulus (conditioned stimulus, CS) becomes associated with a biologically salient event (unconditioned stimulus, US), which might be pain (aversive conditioning) or food (appetitive conditioning). After a few associations, the CS is able to initiate either defensive or consummatory responses, respectively. Contrary to aversive conditioning, appetitive conditioning is rarely investigated in humans, although its importance for normal and pathological behaviors (e.g., obesity, addiction) is undeniable. The present study intents to translate animal findings on appetitive conditioning to humans using food as an US. Thirty-three participants were investigated between 8 and 10 am without breakfast in order to assure that they felt hungry. During two acquisition phases, one geometrical shape (avCS+) predicted an aversive US (painful electric shock), another shape (appCS+) predicted an appetitive US (chocolate or salty pretzel according to the participants' preference), and a third shape (CS) predicted neither US. In a extinction phase, these three shapes plus a novel shape (NEW) were presented again without US delivery. Valence and arousal ratings as well as startle and skin conductance (SCR) responses were collected as learning indices. We found successful aversive and appetitive conditioning. On the one hand, the avCS+ was rated as more negative and more arousing than the CS and induced startle potentiation and enhanced SCR. On the other hand, the appCS+ was rated more positive than the CS and induced startle attenuation and larger SCR. In summary, we successfully confirmed animal findings in (hungry) humans by demonstrating appetitive learning and normal aversive learning.}, language = {en} } @article{SchroederPfister2015, author = {Schroeder, Philipp A. and Pfister, Roland}, title = {Arbitrary numbers counter fair decisions: trails of markedness in card distribution}, series = {Frontiers in Psychology}, volume = {6}, journal = {Frontiers in Psychology}, doi = {10.3389/fpsyg.2015.00240}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143481}, pages = {240}, year = {2015}, abstract = {Converging evidence from controlled experiments suggests that the mere processing of a number and its attributes such as value or parity might affect free choice decisions between different actions. For example the spatial numerical associations of response codes (SNARC) effect indicates the magnitude of a digit to be associated with a spatial representation and might therefore affect spatial response choices (i.e., decisions between a "left" and a "right" option). At the same time, other (linguistic) features of a number such as parity are embedded into space and might likewise prime left or right responses through feature words [odd or even, respectively; markedness association of response codes (MARC) effect]. In this experiment we aimed at documenting such influences in a natural setting. We therefore assessed number space and parity space association effects by exposing participants to a fair distribution task in a card playing scenario. Participants drew cards, read out loud their number values, and announced their response choice, i.e., dealing it to a left vs. right player, indicated by Playmobil characters. Not only did participants prefer to deal more cards to the right player, the card's digits also affected response choices and led to a slightly but systematically unfair distribution, supported by a regular SNARC effect and counteracted by a reversed MARC effect. The experiment demonstrates the impact of SNARC- and MARC-like biases in free choice behavior through verbal and visual numerical information processing even in a setting with high external validity.}, language = {en} } @article{CheethamWuPaulietal.2015, author = {Cheetham, Marcus and Wu, Lingdan and Pauli, Paul and Jancke, Lutz}, title = {Arousal, valence, and the uncanny valley: psychophysiological and self-report findings}, series = {Frontiers in Psychology}, volume = {6}, journal = {Frontiers in Psychology}, number = {981}, doi = {10.3389/fpsyg.2015.00981}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151519}, year = {2015}, abstract = {The main prediction of the Uncanny Valley Hypothesis (UVH) is that observation of humanlike characters that are difficult to distinguish from the human counterpart will evoke a state of negative affect. Well-established electrophysiological [late positive potential (LPP) and facial electromyography (EMG)] and self-report [Self-Assessment Manikin (SAM)] indices of valence and arousal, i.e., the primary orthogonal dimensions of affective experience, were used to test this prediction by examining affective experience in response to categorically ambiguous compared with unambiguous avatar and human faces (N = 30). LPP and EMG provided direct psychophysiological indices of affective state during passive observation and the SAM provided self-reported indices of affective state during explicit cognitive evaluation of static facial stimuli. The faces were drawn from well-controlled morph continua representing the UVH' dimension of human likeness (DHL). The results provide no support for the notion that category ambiguity along the DHL is specifically associated with enhanced experience of negative affect. On the contrary, the LPP and SAM-based measures of arousal and valence indicated a general increase in negative affective state (i.e., enhanced arousal and negative valence) with greater morph distance from the human end of the DHL. A second sample (N = 30) produced the same finding, using an ad hoc self-rating scale of feelings of familiarity, i.e., an oft-used measure of affective experience along the UVH' familiarity dimension. In conclusion, this multi-method approach using well-validated psychophysiological and self-rating indices of arousal and valence rejects for passive observation and for explicit affective evaluation of static faces the main prediction of the UVH.}, language = {en} } @phdthesis{Kastner2015, author = {Kastner, Anna Katharina}, title = {Attention mechanisms in contextual anxiety and cued fear and their influence on processing of social cues}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123747}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Anxiety is an affective state characterized by a sustained, long-lasting defensive response, induced by unpredictable, diffuse threat. In comparison, fear is a phasic response to predictable threat. Fear can be experimentally modeled with the help of cue conditioning. Context conditioning, in which the context serves as the best predictor of a threat due to the absence of any conditioned cues, is seen as an operationalization of sustained anxiety. This thesis used a differential context conditioning paradigm to examine sustained attention processes in a threat context compared to a safety context for the first time. In three studies, the attention mechanisms during the processing of contextual anxiety were examined by measuring heart rate responses and steady-state-visually evoked potentials (ssVEPs). An additional focus was set on the processing of social cues (i.e. faces) and the influence of contextual information on these cues. In a last step, the correlates of sustained anxiety were compared to evoked responses by phasic fear, which was realized in a previously established paradigm combining predictable and unpredictable threat. In the first study, a contextual stimulus was associated with an aversive loud noise, while a second context remained unpaired. This conditioning paradigm created an anxiety context (CTX+) and a safety context (CTX-). After acquisition, a social agent vs. an object was presented as a distractor in both contexts. Heart rate and cortical responses, with ssVEPs by using frequency tagging, to the contexts and the distractors were assessed. Results revealed enhanced ssVEP amplitudes for the CTX+ compared to the CTX- during acquisition and during presentation of distractor stimuli. Additionally, the heart rate was accelerated in the acquisition phase, followed by a heart rate deceleration as a psychophysiological marker of contextual anxiety. Study 2 used the same context conditioning paradigm as Study 1. In contrast to the first study, persons with different emotional facial expressions were presented in the anxiety and safety contexts in order to compare the differential processing of these cues within periods of threat and safety. A similar anxiety response was found in the second study, although only participants who Abstract VIII were aware of the contingency between contexts and aversive event showed a sensory amplification of the threat context, indicated by heart rate response and ssVEP activation. All faces irrespective of their emotional expression received increased attentional resources when presented within the anxiety context, which suggests a general hypervigilance in anxiety contexts. In the third study, the differentiation of predictable and unpredictable threat as an operationalization of fear and anxiety was examined on a cortical and physiological level. In the predictable condition, a social cue was paired with an aversive event, while in the unpredictable condition the aversive event remained unpaired with the respective cue. A fear response to the predictable cue was found, indicated by increased oscillatory response and accelerated heart rate. Both predictable and unpredictable threat yielded increased ssVEP amplitudes evoked by the context stimuli, while the response in the unpredictable context showed longer-lasting ssVEP activation to the threat context. To sum up, all three studies endorsed anxiety as a long-lasting defensive response. Due to the unpredictability of the aversive events, the individuals reacted with hypervigilance in the anxiety context, reflected in a facilitated processing of sensory information and an orienting response. This hypervigilance had an impact on the processing of novel cues, which appeared in the anxiety context. Considering the compared stimuli categories, the stimuli perceived in a state of anxiety received increased attentional resources, irrespective of the emotional arousal conveyed by the facial expression. Both predictable and unpredictable threat elicited sensory amplification of the contexts, while the response in the unpredictable context showed longer-lasting sensory facilitation of the threat context.}, subject = {Angst}, language = {en} } @phdthesis{Kaethner2015, author = {K{\"a}thner, Ivo R. J.}, title = {Auditory and visual brain-computer interfaces as communication aids for persons with severe paralysis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135477}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Brain-computer interfaces (BCIs) could provide a muscle-independent communication channel to persons with severe paralysis by translating brain activity into device commands. As a means of communication, in particular BCIs based on event-related potentials (ERPs) as control signal have been researched. Most of these BCIs rely on visual stimulation and have been investigated with healthy participants in controlled laboratory environments. In proof-of-principle studies targeted end users gained control over BCI systems; however, these systems are not yet established as an assistive technology for persons who would most benefit from them. The main aim of this thesis is to advance the usability of ERP-BCIs for target users. To this end, five studies with BCIs have been conducted that enabled users to communicate by focusing their attention on external stimuli. Two studies were conducted in order to demonstrate the advantages and to further improve the practical application of visual BCIs. In the first study, mental workload was experimentally manipulated during prolonged BCI operation. The study showed the robustness of the visual ERP-BCI since users maintained a satisfactory level of control despite constant distraction in the form of background noise. Moreover, neurophysiological markers that could potentially serve as indicators of high mental workload or fatigue were revealed. This is a first step towards future applications in which the BCI could adapt to the mental state of the user (e.g. pauses if high mental workload is detected to prevent false selections). In the second study, a head-mounted display (HMD), which assures that stimuli are presented in the field of view of the user, was evaluated. High accuracies and information transfer rates, similar to a conventional display, were achieved by healthy participants during a spelling task. Furthermore, a person in the locked-in state (LIS) gained control over the BCI using the HMD. The HMD might be particularly suited for initial communication attempts with persons in the LIS in situations, where mounting a conventional monitor is difficult or not feasible. Visual ERP-BCIs could prove valuable for persons with residual control over eye muscles and sufficient vision. However, since a substantial number of target users have limited control over eye movements and/or visual impairments, BCIs based on non-visual modalities are required. Therefore, a main aspect of this thesis was to improve an auditory paradigm that should enable motor impaired users to spell by focusing attention on different tones. The two conducted studies revealed that healthy participants were able to achieve high spelling performance with the BCI already in the first session and stress the importance of the choice of the stimulus material. The employed natural tones resulted in an increase in performance compared to a previous study that used artificial tones as stimuli. Furthermore, three out of five users with a varying degree of motor impairments could gain control over the system within the five conducted sessions. Their performance increased significantly from the first to the fifth session - an effect not previously observed for visual ERP-BCIs. Hence, training is particularly important when testing auditory multiclass BCIs with potential users. A prerequisite for user satisfaction is that the BCI technology matches user requirements. In this context, it is important to compare BCIs with already established assistive technology. Thus, the fifth study of this dissertation evaluated gaze dependent methods (EOG, eye tracking) as possible control signals for assistive technology and a binary auditory BCI with a person in the locked-in state. The study participant gained control over all tested systems and rated the ease of use of the BCI as the highest among the tested alternatives, but also rated it as the most tiring due to the high amount of attention that was needed for a simple selection. Further efforts are necessary to simplify operation of the BCI. The involvement of end users in all steps of the design and development process of BCIs will increase the likelihood that they can eventually be used as assistive technology in daily life. The work presented in this thesis is a substantial contribution towards the goal of re-enabling communication to users who cannot rely on motor activity to convey their thoughts.}, subject = {Gehirn-Computer Schnittstelle}, language = {en} } @article{MirallesVargiuDauwalderetal.2015, author = {Miralles, Felip and Vargiu, Eloisa and Dauwalder, Stefan and Sol{\`a}, Marc and M{\"u}ller-Putz, Gernot and Wriessnegger, Selina C. and Pinegger, Andreas and K{\"u}bler, Andrea and Halder, Sebastian and K{\"a}thner, Ivo and Martin, Suzanne and Daly, Jean and Armstrong, Elaine and Guger, Christoph and Hinterm{\"u}ller, Christoph and Lowish, Hannah}, title = {Brain computer interface on track to home.}, series = {The Scientific World Journal}, volume = {2015}, journal = {The Scientific World Journal}, number = {623896}, doi = {10.1155/2015/623896}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149575}, year = {2015}, abstract = {The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs), to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users' home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within a user-centred design approach. The final BackHome system is the result of a 3-year long process involving extensive user engagement to maximize effectiveness, reliability, robustness, and ease of use of a home based BCI system. The system is comprised of ergonomic and hassle-free BCI equipment; one-click software services for Smart Home control, cognitive stimulation, and web browsing; and remote telemonitoring and home support tools to enable independent home use for nonexpert caregivers and users. BackHome aims to successfully bring BCIs to the home of people with limited mobility to restore their independence and ultimately improve their quality of life.}, language = {en} } @article{KaethnerKueblerHalder2015, author = {K{\"a}thner, Ivo and K{\"u}bler, Andrea and Halder, Sebastian}, title = {Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state}, series = {Journal of NeuroEngineering and Rehabilitation}, volume = {12}, journal = {Journal of NeuroEngineering and Rehabilitation}, number = {76}, doi = {10.1186/s12984-015-0071-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145305}, year = {2015}, abstract = {Background In this study, we evaluated electrooculography (EOG), an eye tracker and an auditory brain-computer interface (BCI) as access methods to augmentative and alternative communication (AAC). The participant of the study has been in the locked-in state (LIS) for 6 years due to amyotrophic lateral sclerosis. He was able to communicate with slow residual eye movements, but had no means of partner independent communication. We discuss the usability of all tested access methods and the prospects of using BCIs as an assistive technology. Methods Within four days, we tested whether EOG, eye tracking and a BCI would allow the participant in LIS to make simple selections. We optimized the parameters in an iterative procedure for all systems. Results The participant was able to gain control over all three systems. Nonetheless, due to the level of proficiency previously achieved with his low-tech AAC method, he did not consider using any of the tested systems as an additional communication channel. However, he would consider using the BCI once control over his eye muscles would no longer be possible. He rated the ease of use of the BCI as the highest among the tested systems, because no precise eye movements were required; but also as the most tiring, due to the high level of attention needed to operate the BCI. Conclusions In this case study, the partner based communication was possible due to the good care provided and the proficiency achieved by the interlocutors. To ease the transition from a low-tech AAC method to a BCI once control over all muscles is lost, it must be simple to operate. For persons, who rely on AAC and are affected by a progressive neuromuscular disease, we argue that a complementary approach, combining BCIs and standard assistive technology, can prove valuable to achieve partner independent communication and ease the transition to a purely BCI based approach. Finally, we provide further evidence for the importance of a user-centered approach in the design of new assistive devices.}, language = {en} } @article{KozlikNeumannLozo2015, author = {Kozlik, Julia and Neumann, Roland and Lozo, Ljubica}, title = {Contrasting motivational orientation and evaluative coding accounts: on the need to differentiate the effectors of approach/avoidance responses}, series = {Frontiers in Psychology}, volume = {6}, journal = {Frontiers in Psychology}, number = {563}, doi = {10.3389/fpsyg.2015.00563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143192}, year = {2015}, abstract = {Several emotion theorists suggest that valenced stimuli automatically trigger motivational orientations and thereby facilitate corresponding behavior. Positive stimuli were thought to activate approach motivational circuits which in turn primed approach-related behavioral tendencies whereas negative stimuli were supposed to activate avoidance motivational circuits so that avoidance-related behavioral tendencies were primed (motivational orientation account). However, recent research suggests that typically observed affective stimulus response compatibility phenomena might be entirely explained in terms of theories accounting for mechanisms of general action control instead of assuming motivational orientations to mediate the effects (evaluative coding account). In what follows, we explore to what extent this notion is applicable. We present literature suggesting that evaluative coding mechanisms indeed influence a wide variety of affective stimulus response compatibility phenomena. However, the evaluative coding account does not seem to be sufficient to explain affective S-R compatibility effects. Instead, several studies provide clear evidence in favor of the motivational orientation account that seems to operate independently of evaluative coding mechanisms. Implications for theoretical developments and future research designs are discussed.}, language = {en} }