@phdthesis{Schulte2003, author = {Schulte, Valerie}, title = {In vitro and in vivo studies on the activating platelet collagen receptor glycoprotein VI in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6564}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {The work summarized here focused on the characterization of the murine platelet collagen receptor glycoprotein (GP) VI and was performed to evaluate its potential as an antithrombotic target. The first mAb against (mouse) GPVI, JAQ1, was generated and used to demonstrate that GPVI requires the FcRgamma-chain for its expression and function and that this receptor is the central molecule in collagen-induced platelet activation. Blocking the major collagen binding site on GPVI with JAQ1 revealed the presence of a second activatory epitope within collagen. Additionally, the collagen receptor integrin alpha2beta1 was found to be required for activation via this second pathway but not to be essential for collagen-induced activation of normal platelets. In studies with mice expressing reduced levels of the GPVI-FcRgamma-complex, differential responses to GPVI ligands were observed. Most importantly, the striking difference between platelet responses to collagen and the GPVI specific synthetic collagen related peptide (CRP) confirmed the supportive role of other collagen receptor(s) on platelets. Irrespective of yet undefined additional receptors, studies with mice deficient in GPVI (FcRgamma-chain) or alpha2beta1 showed that GPVI, but not alpha2beta1 is essential for platelet-collagen interaction. Based on these results, the model of platelet attachment to collagen was revised establishing GPVI as the initial activating receptor which upregulates the activity of integrins, thus enabling firm attachment of platelets to the ECM. While the mAb JAQ1 had only limited inhibitory effects on collagen-induced activation in vitro, its in vivo application to mice resulted in completely abolished platelet responses to collagen and the GPVI specific agonists CRP and convulxin. This effect was found to be due to antibody-induced irreversible down-regulation of GPVI on circulating platelets for at least two weeks. Further studies revealed that GPVI depletion occurs independently of the targeted epitope on the receptor and does not require the divalent form of IgG as it was also induced by mAbs (JAQ2, JAQ3) or the respective Fab fragments directed against epitopes distinct from the major collagen binding site. The internalization of GPVI in vivo resulted in a long-term protection of the mice from lethal collagen-dependent thromboembolism whereas it had only moderate effects on the bleeding time, probably because the treatment did not affect other activation pathways. These results establish GPVI as a potential pharmacological target for the prevention of ischemic cardiovascular diseases and may open the way for a completely new generation of antithrombotics.}, subject = {Maus}, language = {en} } @phdthesis{Rabie2005, author = {Rabie, Tamer}, title = {Cellular regulation of platelet glycoprotein VI : in vivo and in vitro studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14267}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Platelet interaction with the subendothelium is essential to limit blood loss after tissue injury. However, upon rupture of atherosclerotic plaques, this interaction may result in blood vessel occlusion leading to life threatening diseases such as myocardial infarction or stroke. Among the subendothelial matrix proteins, collagen is considered to be the most thrombogenic component as it directly activates platelets. Platelets interact with collagen, either indirectly through glycoprotein (GP) Ib-V-IX receptor complex, or directly through the major collagen receptor on the platelet surface, GPVI. The work presented here focused on studying the cellular regulation of GPVI. In addition, a possible role for GPVI in thrombus formation induced by atherosclerotic plaque material was investigated and it was found that GPVI plays an important role in this process. Using a recently published mitochondrial injury model, it was found that GPVI contains a cleavage site for a platelet-expressed metalloproteinase. Further studies showed that platelet activation by CRP, or thrombin induced down-regulation of GPIb\&\#61537;, but not GPVI. In parallel, cellular regulation of GPV was studied and it was found that GPV is cleaved in vitro by the metalloproteinase ADAM17. In previous studies it was shown that injection of mice with the anti-GPVI mAb, JAQ1, induces GPVI down-regulation, which is associated with a strong, but transient, thrombocytopenia. Using new anti-GPVI mAbs, which bind different epitopes on the receptor, it is shown in this study that GPVI down-regulation occurs in an epitope-independent manner. Further experiments showed that antibody treatment induces a transient, but significant increase in bleeding time. Using different genetically modified mice, it is shown that, upon antibody injection, GPVI is both, shed from the platelet surface and internalized into the platelet. Signaling through the immunoreceptor tyrosine-based activation motif (ITAM) of the FcR\&\#61543; chain is essential for both processes, while LAT and PLC\&\#61543;2 are essential for the shedding process only. Antibody-induced increase in bleeding time and thrombocytopenia were absent in LAT deficient mice, showing that it is possible to uncouple the associated side effects from the down-regulation process. As antibody-induced GPVI internalization still occurs in LAT and PLC\&\#61543;2 deficient mice, this suggests a novel signaling pathway downstream of GPVI that has not been described so far.}, subject = {Maus}, language = {en} } @phdthesis{Pozgajova2005, author = {Pozgajova, Miroslava}, title = {Studies on formation and stabilization of pathological thrombi in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16784}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Platelet activation and adhesion resulting in thrombus growth is essential for normal hemostasis, but can lead to irreversible, life-threatening vessel occlusion. In the current study, the contribution of platelet integrins, activation receptors and the contact system of blood coagulation in such pathological conditions was investigated in mice.}, subject = {Thrombose}, language = {en} } @phdthesis{Beitzinger2005, author = {Beitzinger, Michaela}, title = {Regulierung der Telomerase durch das p53-Homolog p73}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17985}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Das Ribonukleoprotein, Telomerase wird vor allem f{\"u}r die Aufrechterhaltung der Telomerl{\"a}nge ben{\"o}tigt und ist normalerweise nur in Keimbahnzellen, Stammzellen und anderen Zellen mit erh{\"o}hter Regenerationsf{\"a}higkeit aktiv. Die Aktivierung der Telomerase ist dar{\"u}ber hinaus ein wichtiger Faktor w{\"a}hrend der Krebsentstehung. Fast das komplette Spektrum humaner Tumore zeichnet sich durch hohe Telomerase-Aktivit{\"a}t aus. Vor allem maligne Tumore besitzen eine sehr aktive Telomerase, unlimitiertes Wachstum und Immortalit{\"a}t erm{\"o}glicht. Die Aktivit{\"a}t der Telomerase wird vor allem {\"u}ber die Expression der katalytischen Untereinheit hTERT reguliert, die unter der strikten Kontrolle verschiedener Tumorsuppressorgene liegt. Zu den wichtigsten Regulatoren der hTERT-Expression geh{\"o}rt auch der bekannte Tumorsuppressor p53. {\"U}ber die Rolle des p53-Familienmitglieds p73 in der Regulation der Telomerase-Aktivit{\"a}t war bisher nur wenig bekannt. Im Rahmen dieser Arbeit konnte ein regulatorischer Einfluss von p73 nachgewiesen werden. Dabei wurden deutliche Unterschiede in der Funktion der N-terminalen Isoformen TAp73 und DeltaNp73 beobachtet. TAp73 erwies sich sowohl nach {\"U}berexpression als auch nach Induktion des endogenen TAp73 als ein effizienter Repressor der hTERT-Expression. Im Gegensatz dazu konnte durch die Hemmung des endogenen TAp73 mittels RNAi die Expression von hTERT in verschiedenen Zelllinen induziert werden. Zus{\"a}tzlich zu der Funktion als Tumorsuppressor scheint p73 auch in verschiedene Differenzierungsprozesse involviert zu sein. Die Expression von p73 korreliert zwar mit der Hemmung der Telomerase-Aktivit{\"a}t w{\"a}hrend der myeloischen Differenzierung von HL60-Zellen, hat hier aber keine Bedeutung f{\"u}r die Repression von hTERT. Die N-terminal verk{\"u}rzte Isoform DeltaNp73 wirkt im Gegensatz zu TAp73 als effizienter Aktivator der hTERT-Expression. DeltaNp73 induziert die hTERT-Expression einerseits {\"u}ber seine dominant-negative Funktion auf die pro-apoptotischen p53-Familienmitglieder und andererseits {\"u}ber die Hemmung repressiver RB-E2F-Komplexe. Im Rahmen dieser Studie erwies sich p73 somit als ein wichtiger Regulator der Telomerase Aktivit{\"a}t, wobei sich eine duale Rolle als negativer (TAp73) und auch als positiver (DeltaNp73) Regulator der Telomerase Aktivit{\"a}t herausstellte.}, language = {de} } @phdthesis{Strehl2006, author = {Strehl, Amrei}, title = {Studies on regulation and signaling of the platelet glycoproteins GPV and GPVI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22283}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Bei Verletzung einer Gef{\"a}ßwand kommen Blutpl{\"a}ttchen in Kontakt mit den Substanzen des Subendothels; Die Pl{\"a}ttchen werden dadurch aktiviert, sie aggregieren und verschließen die Wunde, wodurch ein hoher Blutverlust verhindert wird. Unter pathologischen Bedingungen, bei Aufbrechen eines artherosklerotischen Plaques an der Gef{\"a}ßwand, k{\"o}nnen sich jedoch große Pl{\"a}ttchenaggregate, die Thromben, formen, die das Gef{\"a}ß verschließen, den Blutfluss stoppen und somit zu Schlaganfall und Herzinfarkt f{\"u}hren k{\"o}nnen. Die kontrollierte Regulation und Signaltransduktion von bzw. durch Pl{\"a}ttchenoberfl{\"a}chenrezeptoren ist wesentlich f{\"u}r das Funktionieren der Zellen und die intakte Balance zwischen physiologischer Pl{\"a}ttchen-Aktivierung und der pathologischen Bildung eines Thrombus. In der vorliegenden Arbeit wird {\"u}ber wichtige Aspekte dieser Signalwege, die in drei Unterprojekten untersucht worden sind, berichtet. In dem ersten Unterprojekt wurde die Regulation von Pl{\"a}ttchenoberfl{\"a}chenrezeptoren, den Glykoproteinen (GP) V und VI, bei M{\"a}usen analysiert. Hier wird beschrieben, dass GPV und GPVI von der Pl{\"a}ttchenoberfl{\"a}che durch Metalloproteinasen geschnitten werden. W{\"a}hrend physiologischer Stress, wie das Entkoppeln der oxidativen Phosphorylierung in den Mitochondrien, das Schneiden von GPVI durch eine unbekannte Proteinase ausl{\"o}st, verursacht die Aktivierung von Pl{\"a}ttchen mit bestimmten Agonisten das Schneiden von GPV. Die daf{\"u}r verantwortliche Metalloproteinase wurde als ADAM17 identifiziert. In dem zweiten Unterprojekt wurde die Rolle der Protein Kinase C (PKC) in der Pl{\"a}ttchenaktivierung einerseits und in der Pl{\"a}ttchen pro-koagulanten Aktivit{\"a}t andereseits untersucht. Die Konformations{\"a}nderung/Aktivierung von alphaIIbeta3-Integrinen und Sekretion von Granula sind charakteristisch f{\"u}r die Pl{\"a}ttchenaktivierung. Calcium-(Ca2+)-abh{\"a}ngige Phosphatidylserin (PS)- Expression auf der Pl{\"a}ttchenoberfl{\"a}che hingegen ist kennzeichnend f{\"u}r die pro-koagulante Aktivit{\"a}t. Der Beitrag von PKC zu den beschriebenen Pl{\"a}ttchenzust{\"a}nden war bisher unklar. In diesem Projekt wurde zum ersten Mal gezeigt, dass PKC eine doppelte Funktion in den Pl{\"a}ttchen besitzt: einerseits f{\"o}rdert PKC die Pl{\"a}ttchen-Aktivierung und -Aggregation, andererseits unterdr{\"u}ckt PKC die pro-koagulant Aktivit{\"a}t. In dem dritten Unterprojekt wurde die Rolle der kleinen GTPase Rac1 in der Pl{\"a}ttchen- Aktivierung und -Aggregation in vitro und in vivo an konditionalen Rac1 M{\"a}usen analysiert. Es wird berichtet, dass Rac1 f{\"u}r die GPVI abh{\"a}ngige Aktivierung von alphaIIbbeta3-Integrinen und dem Freisetzen von Ca2+ in der Zelle, notwendig ist, sowie f{\"u}r GPVI abh{\"a}ngige Pl{\"a}ttchen-Aggregation und Thrombus Bildung. Hiermit wird die GTPase Rac1 zum ersten Mal in den Signalweg unterhalb von GPVI eingeordnet und ihr zudem dort eine essentielle Rolle zugeteilt.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Jurak2006, author = {Jurak, Igor}, title = {The molecular mechanism of the Cytomegalovirus species specificity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19233}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Viruses have undergone a coevolution with their hosts, resulting in a specific adaptation to them. Consequently, many viruses have a limited host range. Occasionally, viruses acquire an adaptive mutation, which allows infection and replication in a different species as shown recently for the human immunodeficiency virus and influenza virus. Cross-species infections are responsible for the majority of emerging and re-emerging viral diseases. However, little is known about the mechanisms that restrict viruses to a certain host species, and the factors viruses need to cross the species barrier and replicate in a different host. Cytomegaloviruses are prototypes of the beta-herpesvirus subfamily and are highly species specific. They replicate only in cells of their own or a closely related species. The molecular mechanism underlying their species specificity is poorly understood and was investigated in this study. An initial observation showed that murine cytomegalovirus (MCMV) can replicate in human 293 and 911 cells, but not in any other human cells tested. Both cell lines are transformed with adenoviral E1 genes that encode a transcriptional transactivator (E1A) and two suppressors of apoptosis (E1B-55k and E1B-19k). This has led to the hypothesis that these functions are required for MCMV replication in human cells. Further analysis revealed that normal human cells died rapidly after infection of caspase-9-mediated apoptosis. Apoptosis induced by MCMV can be suppressed by broad-spectrum caspase inhibitors, and virus replication can be rescued, indicating a major role of caspases in this process. Furthermore, over-expression of a mitochondria-localized inhibitor of apoptosis, a Bcl-2-like protein, prevented apoptosis induced by this virus. Human cells resistant to apoptosis allowed also an efficient MCMV replication. The important role of Bcl-2-like proteins for cytomegalovirus cross-species infections was subsequently confirmed by inserting the corresponding genes, and other inhibitors of apoptosis and control genes into the MCMV genome. Only recombinant viruses expressing a Bcl-2-like protein were able to replicate in human cells. A single gene of human cytomegalovirus encoding a mitochondrial inhibitor of apoptosis was sufficient to allow MCMV replication in human cells. Moreover, the same principle facilitated replication of the rat cytomegalovirus in human cells. Thus, induction of apoptosis limits rodent cytomegalovirus cross-species infection.}, subject = {Cytomegalie-Virus}, language = {en} } @phdthesis{Valchanova2006, author = {Valchanova, Stamatova Ralitsa}, title = {Functional analysis of the murine cytomegalovirus genes m142 and m143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20215}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Human cytomegalovirus (HCMV) infection causes clinical symptoms in immunocompromised individuals such as transplantant recipients and AIDS patients. The virus is also responsible for severe complications in unborn children and young infants. The species specificity of HCMV prevents the direct study of mechanisms controlling the infection in animal models. Instead, the murine cytomegalovirus (MCMV) is used as a model system. Human and murine CMVs have large double-stranded DNA genomes, encoding nearly 170 genes. About 30\% of the genes are committed to essential tasks of the virus. The remaining genes are involved in virus pathogenesis or host interaction and are dispensable for virus replication. The CMV genes are classified in gene families, based on sequence homology. In the present work, the function of two genes of the US22 gene family was analyzed. The MCMV genes m142 and m143 are the only members of this family that are essential for virus replication. These genes also differ from the remaining ten US22 gene family members in that they lack 1 of 4 conserved sequence motifs that are characteristic of this family. The same conserved motif is missing in the HCMV US22 family members TRS1 and IRS1, suggesting a possible functional homology. To demonstrate an essential role of m142 and m143, the genes were deleted from the MCMV genome, and the mutants were reconstituted on complementing cells. Infection of non-complementing cells with the deletion mutants did not result in virus replication. Virus growth was rescued by reinsertion of the corresponding genes. Cells infected with the viral deletion mutants synthesized reduced amounts of viral DNA, and viral late genes were not expressed. However, RNA analyses showed that late transcripts were present, excluding a role of m142 and m143 in regulation of gene transcription. Metabolic labelling experiments showed that total protein synthesis at late times postinfection was impaired in cells infected with deletion mutants. Moreover, the dsRNA-dependent protein kinase R (PKR) and its target protein, the translation initiation factor 2\&\#945; (eIF2\&\#945;) were phosphorylated in these cells. This suggested that the m142 and m143 are required for blocking the PKR-mediated shut-down of protein synthesis. Expression of the HCMV gene TRS1, a known inhibitor of PKR activation, rescued the replication of the deletion mutants, supporting the observation that m142 and m143 are required to inhibit this innate immune response of the host cell.}, subject = {Maus}, language = {en} } @phdthesis{Cam2006, author = {Cam, Hakan}, title = {The role of p53 family members in myogenic differentiation and rhabdomyosarcoma development}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20240}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Krebserkrankungen zeichnen sich h{\"a}ufig durch St{\"o}rungen zellul{\"a}rer Differenzierungsprozesse aus. So weisen Rhabdomyosarkome, die aus Muskelvorl{\"a}uferzellen hervorgehen, Differenzierungsdefekte auf, die zur unkontrollierten Proliferation der Tumorzellen f{\"u}hren. Bislang ist ungekl{\"a}rt, ob die Differenzierungsdefekte auf der verst{\"a}rkten Expression von Inhibitoren, der defekten Funktion von Aktivatoren oder einer Kombination von beidem beruht. In dieser Arbeit wird gezeigt, dass im Unterschied zu normalen Muskelzellen RMS-Zellen verst{\"a}rkt DeltaNp73, einen Pan-Inhibitor der p53-Tumorsuppressorfamilie, exprimieren. Die experimentelle {\"U}berexpression von DeltaNp73 in normalen Myoblasten blockierte die Muskeldifferenzierung und f{\"o}rderte in Kombination mit klassischen RMS-Onkogenen wie IGF2 oder PAX3/FKHR die maligne Transformation. Umgekehrt f{\"u}hrte die Hemmung von DeltaNp73 durch RNAi zur Reduktion der Tumorigenit{\"a}t von RMS-Tumorzellen. Da DeltaNp73 als dominant-negativer Inhibitor der p53-Familie wirkt, lies die Hemmung von Differenzierungsprozessen durch DeltaNp73 vermuten, dass die p53-Familienmitglieder (p53, p63, und p73) an der Regulation der Muskeldifferenzierung beteiligt sind. Tats{\"a}chlich konnte in dieser Arbeit gezeigt werden, dass die drei p53-Familienmitglieder bei der Induktion sp{\"a}ter Differenzierungsstadien kooperieren, indem sie die Aktivit{\"a}t des Retinoblastoma-Proteins RB regulieren. Die Funktion von RB ist bekanntermassen sowohl f{\"u}r den permanenten Zellzyklusarrest als auch f{\"u}r die Aktivierung Muskel-spezifischer Gene notwendig. W{\"a}hrend p53 die Proteinspiegel von RB reguliert, kontrollieren p63 und p73 den Aktivierungsgrad von RB, indem sie dessen Phoshphorylierungszustand {\"u}ber den Zyklin-abh{\"a}ngigen Kinaseinhibitor p57KIP2 modifizieren. Eine Hemmung dieser Funktionen blockiert das Differenzierungsprogramm und f{\"o}rdert die Tumorentstehung. Die Aktivierung zellul{\"a}rer Differenzierungsprozesse stellt somit einen entscheidenden Bestandteil der Tumorsuppressoraktivit{\"a}t der p53-Familie dar und liefert eine Erkl{\"a}rung f{\"u}r die H{\"a}ufigkeit von Mutationen im p53-Signalweg bei Rhabdomyosarkom-Patienten.}, subject = {Rhabdomyosarkom}, language = {de} } @phdthesis{Gromova2007, author = {Gromova, Kira V.}, title = {Visualization of the Smad direct signaling response to Bone Morphogenetic Protein 4 activation with FRET-based biosensors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25855}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The Transforming Growth Factor (TGF) superfamily of cytokines and their serine/threonine kinase receptors play an important role in the regulation of cell division, differentiation, adhesion, migration, organization, and death. Smad proteins are the major intracellular signal transducers for the TGF receptor superfamily that mediate the signal from the membrane into the nucleus. Bone Morphogenetic Protein-4 (BMP-4) is a representative of the TGF superfamily, which regulates the formation of teeth, limbs and bone, and also plays a role in fracture repair. Binding of BMP-4 to its receptor stimulates phosphorylation of Smad1, which subsequently recruits Smad4. A hetero-oligomeric complex consisting of Smad1 and Smad4 then translocates into the nucleus and regulates transcription of target genes by interacting with transcription factors. Although the individual steps of the signaling cascade from the receptor to the nucleus have been identified, the exact kinetics and the rate limiting step(s) have remained elusive. Standard biochemical techniques are not suitable for resolving these issues, as they do not offer sufficiently high sensitivity and temporal resolution. In this study, advanced optical techniques were used for direct visualization of Smad signaling in live mammalian cells. Novel fluorescent biosensors were developed by fusing cyan and yellow fluorescent proteins to the signaling molecules Smad1 and Smad4. By measuring Fluorescence Resonance Energy Transfer (FRET) between the two fluorescent proteins, the kinetics of BMP/Smad signaling was unraveled. A rate-limiting delay of 2 - 5 minutes occurred between BMP receptor stimulation and Smad1 activation. A similar delay was observed in the complex formation between Smad1 and Smad4. Further experimentation indicated that the delay is dependent on the Mad homology 1 (MH1) domain of Smad1. These results give new insights into the dynamics of the BMP receptor - Smad1/4 signaling process and provide a new tool for studying Smads and for testing inhibitory drugs.}, subject = {FRET}, language = {en} } @phdthesis{Mack2008, author = {Mack, Claudia}, title = {Inhibition des programmierten Zelltodes und proinflammatorischer Signale durch das Cytomegalovirus-Protein M45}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die angeborene Immunit{\"a}t ist entstanden als Schutz gegen{\"u}ber einer Vielzahl sch{\"a}digender Einfl{\"u}sse, denen ein Organismus ausgesetzt ist, und dient im Besonderen der sofortigen Abwehr von Krankheitserregern. Sie basiert auf der Funktion verschiedener keimbahnkodierter Rezeptoren und Sensoren, wie etwa den Toll-like Rezeptoren, die bestimmte fremdartige Strukturen der Krankheitserreger erkennen und daraufhin diverse Immunabwehrmechanismen ausl{\"o}sen. Hierbei kann die Detektion der Fremdstrukturen zum einen {\"u}ber die Aktivierung von Transkriptionsfaktoren, wie AP-1, NF-kB und IRFs, die Produktion antiviraler und proinflammatorischer Zytokine verursachen, welche daraufhin auf andere Zellen einwirken. Zum anderen kann die Detektion der Fremdstrukturen auch direkte immunologische Effektorfunktionen in der betroffenen Zelle ausl{\"o}sen. Die diversen Signale der Zytokin- und Detektionsrezeptoren m{\"u}nden in gemeinsamen Signalwegen, die daraufhin zur Induktion der verschiedenen Immuneffektorfunktionen f{\"u}hren. H{\"a}ufig kommt es zun{\"a}chst zu einer Aktivierung von NF-kB, was der antiviralen Abwehr, der Beseitigung anderer St{\"o}rungen und dem {\"U}berleben der Zelle unter Stress dient. Wenn der sch{\"a}digende Einfluss zu lange anh{\"a}lt, kann es stattdessen zur Initiation des programmierten Zelltodes kommen. Der programmierte Zelltod wird als sehr effektive Abwehrstrategie vielzelliger Organismen betrachtet, welcher die Ausbreitung intrazellul{\"a}rer Erreger im K{\"o}rper verhindert. Dies beruht darauf, dass die betroffene Zelle abstirbt, bevor der Erreger in der Lage ist, sich zu vervielf{\"a}ltigen und auf benachbarte Zellen zu {\"u}bertragen. Da Viren als intrazellul{\"a}re Parasiten jedoch auf den Metabolismus ihrer Wirtszellen angewiesen sind, mussten sie im Laufe ihrer Evolution vielseitige Immunevasionsfunktionen etablieren, um sich trotz der effektiven antiviralen Wirksamkeit der angeborenen Immunit{\"a}t in den Wirtszellen vermehren zu k{\"o}nnen. In dieser Arbeit konnte ein vielseitiger Immunevasionsmechanismus des murinen Cytomegalovirus aufgedeckt werden. Am Anfang der Arbeit stand die Beobachtung, dass rekombinante murine Cytomegaloviren, die kein funktionsf{\"a}higes M45-Protein exprimieren, nicht mehr in der Lage waren, sich in Endothelzellkulturen auszubreiten, was auf die vorzeitige Induktion des programmierten Zelltodes zur{\"u}ckgef{\"u}hrt wurde. Der Mechanismus, wie das murine Cytomegalovirus-Protein M45 die Einleitung des programmierten Zelltodes verhindert, sollte in dieser Arbeit aufgekl{\"a}rt werden. In ersten Untersuchungen konnte best{\"a}tigt werden, dass M45 tats{\"a}chlich in der Lage ist, infizierte Zellen vor Todesrezeptor-vermitteltem Zelltod zu sch{\"u}tzen. {\"U}ber die Analyse von M45-Interaktionspartnern wurde daraufhin aufgedeckt, dass M45 das zentrale zellul{\"a}re Adapterprotein RIP1 angreift, welches an einem Schnittpunkt verschiedener immunologischer Detektionssysteme und Zytokinsignalwege steht. Durch die Bindung an 5 RIP1 kann M45 die Aktivierung des Transkriptionsfaktors NF-kB nach Stimulation des TLR3 unterbinden, was wahrscheinlich eine wichtige Rolle bei der Detektion einer CMV-Infektion spielt. Des Weiteren inhibiert M45 die Aktivierung von NF-kB und der p38 MAP-Kinase nach TNF-a-Stimulation. Die vermutlich wichtigste Funktion hingegen, die M45 durch die Inhibition von RIP1 aus{\"u}bt, ist die Verhinderung des Caspase-unabh{\"a}ngigen programmierten Zelltodes infizierter Zellen nach Einwirkung von TNF-a. Diese Funktion erkl{\"a}rt den urspr{\"u}nglich beobachteten Ph{\"a}notyp der M45-Deletionsmutante. Es konnte gezeigt werden, dass M45 diese wichtigen Immunevasionsfunktionen allein ohne weitere virale Proteine erf{\"u}llen kann. Sowohl f{\"u}r die Bindung an RIP1 als auch f{\"u}r die Inhibition der TNF-a-induzierten NF-kB-Aktivierung scheint nur der C-terminale Teil des M45 ben{\"o}tigt zu werden. Als molekulare Grundlage konnte nachgewiesen werden, dass M45 die Ubiquitinierung von RIP1 verhindert, welche als Stimulus-abh{\"a}ngige Aktivierung dieses Adapterproteins betrachtet wird. Auf diese Weise werden die verschiedenen RIP1- abh{\"a}ngigen Signalwege von M45 blockiert. Diese Inhibition RIP1-abh{\"a}ngiger Signalwege durch das MCMV-Protein M45 stellt einen neuen viralen Evasionsmechanismus dar, mit dem gleichzeitig mehrere antivirale und proinflammatorische Signalwege inhibiert werden k{\"o}nnen und der vermutlich entscheidend zur erfolgreichen Vermehrung und Pathogenese des murinen Cytomegalovirus beitr{\"a}gt.}, language = {de} }