@article{EisenreichRudelHeesemannetal.2021, author = {Eisenreich, Wolfgang and Rudel, Thomas and Heesemann, J{\"u}rgen and Goebel, Werner}, title = {Persistence of Intracellular Bacterial Pathogens—With a Focus on the Metabolic Perspective}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.615450}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222348}, year = {2021}, abstract = {Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.}, language = {en} } @article{EisenreichRudelHeesemannetal.2019, author = {Eisenreich, Wolfgang and Rudel, Thomas and Heesemann, J{\"u}rgen and Goebel, Werner}, title = {How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {9}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2019.00042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197188}, year = {2019}, abstract = {Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections.}, language = {en} } @article{GoetzEylertEisenreichetal.2010, author = {Goetz, Andreas and Eylert, Eva and Eisenreich, Wolfgang and Goebel, Werner}, title = {Carbon Metabolism of Enterobacterial Human Pathogens Growing in Epithelial Colorectal Adenocarcinoma (Caco-2) Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68555}, year = {2010}, abstract = {Analysis of the genome sequences of the major human bacterial pathogens has provided a large amount of information concerning their metabolic potential. However, our knowledge of the actual metabolic pathways and metabolite fluxes occurring in these pathogens under infection conditions is still limited. In this study, we analysed the intracellular carbon metabolism of enteroinvasive Escherichia coli (EIEC HN280 and EIEC 4608-58) and Salmonella enterica Serovar Typhimurium (Stm 14028) replicating in epithelial colorectal adenocarcinoma cells (Caco-2). To this aim, we supplied [U-13C6]glucose to Caco-2 cells infected with the bacterial strains or mutants thereof impaired in the uptake of glucose, mannose and/or glucose 6-phosphate. The 13C-isotopologue patterns of protein-derived amino acids from the bacteria and the host cells were then determined by mass spectrometry. The data showed that EIEC HN280 growing in the cytosol of the host cells, as well as Stm 14028 replicating in the Salmonella-containing vacuole (SCV) utilised glucose, but not glucose 6-phosphate, other phosphorylated carbohydrates, gluconate or fatty acids as major carbon substrates. EIEC 4608-58 used C3-compound(s) in addition to glucose as carbon source. The labelling patterns reflected strain-dependent carbon flux via glycolysis and/or the Entner-Doudoroff pathway, the pentose phosphate pathway, the TCA cycle and anapleurotic reactions between PEP and oxaloacetate. Mutants of all three strains impaired in the uptake of glucose switched to C3-substrate(s) accompanied by an increased uptake of amino acids (and possibly also other anabolic monomers) from the host cell. Surprisingly, the metabolism of the host cells, as judged by the efficiency of 13C-incorporation into host cell amino acids, was not significantly affected by the infection with either of these intracellular pathogens.}, subject = {Metabolismus}, language = {en} } @article{GoebelKreft1972, author = {Goebel, Werner and Kreft, J{\"u}rgen}, title = {Accumulation of replicative intermediates and catenated forms of the colicinogenic factor E\(_1\) in E. coli during the replication at elevated temperatures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60625}, year = {1972}, abstract = {No abstract available}, subject = {Biologie}, language = {en} } @article{HaertleinSchiesslWagneretal.1983, author = {H{\"a}rtlein, Michael and Schiessl, Sigrid and Wagner, Wilma and Rdest, Ursula and Kreft, J{\"u}rgen and Goebel, Werner}, title = {Transport of hemolysin by Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60619}, year = {1983}, abstract = {No abstract available}, subject = {Biologie}, language = {en} } @article{KreftBurgerGoebel1983, author = {Kreft, J{\"u}rgen and Burger, Klaus J. and Goebel, Werner}, title = {Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60600}, year = {1983}, abstract = {Bifunctional recombinant plasmids were constructed, comprised of the E. coli vectors pBR322, pBR325 and pACYC184 and different plasmids from Gram-positive bacteria, e.g. pBSU161-1 of B. subtilis and pUB110 and pC221 of S. aureus. The beta-lactamase (bla) gene and the chloramphenicol acetyltransferase (cat) gene from the E. coli plasmids were not transcribed and therefore not expressed in B. subtilis. However, tetracycline resistance from the E. coli plasmids was expressed in B. subtilis. Transcription of the tetracycline resistance gene(s) started in B. subtilis at or near the original E. coli promoter, the sequence of which is almost identical with the sequence recognized by σ55 of B. subtilis RNA polymerase.}, subject = {Biologie}, language = {en} } @article{KreftBergerHaertleinetal.1983, author = {Kreft, J{\"u}rgen and Berger, Harald and H{\"a}rtlein, Michael and M{\"u}ller, Bodo and Weidinger, Gerhard and Goebel, Werner}, title = {Cloning and expression in Escherichia coli and Bacillus subtilis of the hemolysin (cereolysin) determinant from Bacillus cereus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60596}, year = {1983}, abstract = {From a cosmid gene bank of Bacillus cereus GP4 in Escherichia coli we isolated clones which, after several days of incubation, formed hemolysis zones on erythrocyte agar plates. These clones contained recombinant cosmids with B. cereus DNA insertions of varying lengths which shared some common restriction fragments. The smallest insertionwas recloned as aPstl fragment into pJKK3-1, a shuttle vector which rep{\"u}cates in Bacillus subtilis and E. coli. When this recombinant plasmid (pJKK3-1 hly-1) was transformed into E. coli, it caused hemolysis on erythrocyte agar plates, but in liquid assays no extemal or intemal hemolytic activity could be detected with the E. coli transformants. B. subtilis carrying the same plasmid exhibited hemolytic activity at Ievels comparable to those ofthe B. cereus donor strain. The hemolysin produced in B. subtilis seemed to be indistinguishable from cereolysin in its sensitivity to cholesterol, activation by dithiothreitol, and inactivation by antibodies raised against cereolysin. When the recombinant DNA carrying the cereolysin gene was used as a probe in hybridization experiments with chromosomal DNA from a streptolysin 0-producing strain of Streptococcus pyogenes or from {\"u}steriolysin-producing strains of Usteria monoeytogenes, no positive hybridization signals were obtained. These data soggest that the genes for these three SH-activated cytolysins do not have extended sequence homology.}, subject = {Biologie}, language = {en} } @article{GilmoreCruzRodzLeimeisterWaechteretal.1989, author = {Gilmore, Michael S. and Cruz-Rodz, Armando L. and Leimeister-W{\"a}chter, Michaela and Kreft, J{\"u}rgen and Goebel, Werner}, title = {A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60588}, year = {1989}, abstract = {A cloned cytolytic determinant from the genome of Bacillus cereus GP-4 has been characterized at the molecular Ievel. Nucleotide sequence determination revealed the presence of two open reading frames. 8oth open reading frames were found by deletion and complementation analysis to be necessary for expression of the hemolytic phenotype by Bacillus subtilis and Escherichia coli hosts. The 5' open reading frame was found to be nearly identical to a recently reported phospholipase C gene derived from a mutant B. cereus strain which overexpresses the respective protein, and it conferred a lecithinase-positive phenotype to the B. subtilis host. The 3' open reading frame encoded a sphingomyelinase. The two tandemly encoded activities, phospholipase C and sphingomyelinase, constitute a biologically functional cytolytic determinant of B. cereus termed cereolysin AB.}, subject = {Biologie}, language = {en} } @article{SchueleinKreftGonskietal.1991, author = {Sch{\"u}lein, Ralf and Kreft, J{\"u}rgen and Gonski, Sigrid and Goebel, Werner}, title = {Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60577}, year = {1991}, abstract = {During an investigation into the substrate specificity and processing of subtilisin Carlsberg from Bacillus licheniformis, two major independent findings were made: (i) as has been shown previously, a stretch of five amino acids (residues 97-101 of the mature enzyme) that loops out into the binding cleft is involved in substrate binding by subtilisin Carlsberg. In order to see whether this loop element also determines substrate specificity, the coding region for these five amino acids was deleted from the cloned gene for subtilisin Carlsberg by site-directed mutagenesis. Unexpectedly the resulting mutant preproenzyme (P42c, Mr=42 kDa) was not processed to the mature form (Mr = 30 kDa) and was not released into the medium by a proteasedeficient B. subtilis host strain; rather, it accumulated in the cell membrane. This result demonstrates that the integrity of this loop element, which is very distant from the processing cleavage sites in the preproenzyme, is required for secretion of subtilisin Carlsberg. (ii) In culture supernatants from B. subtilis harbouring the cloned wild-type subtilisin Carlsberg gene the transient appearance (at 0-3 h after onset of stationary phase) of a processing intermediate (P38c, Mr = 38 kDa) oftbis protease could be demonstrated. P38c very probably represents a genuine proform of subtilisin Carlsberg.}, subject = {Biologie}, language = {en} } @article{GoebelKathariouKuhnetal.1988, author = {Goebel, Werner and Kathariou, S. and Kuhn, M. and Sokolovic, Z. and Kreft, J{\"u}rgen and K{\"o}hler, S. and Funke, D. and Chakraborty, T. and Leimeister-W{\"a}chter, M.}, title = {Hemolysin from Listeria-biochemistry, genetics and function in pathogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60563}, year = {1988}, abstract = {No abstract available}, subject = {Biologie}, language = {en} }