@article{KleinBarthelsJoheetal.2020, author = {Klein, Philipp and Barthels, Fabian and Johe, Patrick and Wagner, Annika and Tenzer, Stefan and Distler, Ute and Le, Thien Anh and Schmid, Paul and Engel, Volker and Engels, Bernd and Hellmich, Ute A. and Opatz, Till and Schirmeister, Tanja}, title = {Naphthoquinones as covalent reversible inhibitors of cysteine proteases — studies on inhibition mechanism and kinetics}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules25092064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203791}, year = {2020}, abstract = {The facile synthesis and detailed investigation of a class of highly potent protease inhibitors based on 1,4-naphthoquinones with a dipeptidic recognition motif (HN-l-Phe-l-Leu-OR) in the 2-position and an electron-withdrawing group (EWG) in the 3-position is presented. One of the compound representatives, namely the acid with EWG = CN and with R = H proved to be a highly potent rhodesain inhibitor with nanomolar affinity. The respective benzyl ester (R = Bn) was found to be hydrolyzed by the target enzyme itself yielding the free acid. Detailed kinetic and mass spectrometry studies revealed a reversible covalent binding mode. Theoretical calculations with different density functionals (DFT) as well as wavefunction-based approaches were performed to elucidate the mode of action.}, language = {en} } @article{KleinJoheWagneretal.2020, author = {Klein, Philipp and Johe, Patrick and Wagner, Annika and Jung, Sascha and K{\"u}hlborn, Jonas and Barthels, Fabian and Tenzer, Stefan and Distler, Ute and Waigel, Waldemar and Engels, Bernd and Hellmich, Ute A. and Opatz, Till and Schirmeister, Tanja}, title = {New cysteine protease inhibitors: electrophilic (het)arenes and unexpected prodrug identification for the Trypanosoma protease rhodesain}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {6}, issn = {1420-3049}, doi = {10.3390/molecules25061451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203380}, year = {2020}, abstract = {Electrophilic (het)arenes can undergo reactions with nucleophiles yielding π- or Meisenheimer (σ-) complexes or the products of the S\(_N\)Ar addition/elimination reactions. Such building blocks have only rarely been employed for the design of enzyme inhibitors. Herein, we demonstrate the combination of a peptidic recognition sequence with such electrophilic (het)arenes to generate highly active inhibitors of disease-relevant proteases. We further elucidate an unexpected mode of action for the trypanosomal protease rhodesain using NMR spectroscopy and mass spectrometry, enzyme kinetics and various types of simulations. After hydrolysis of an ester function in the recognition sequence of a weakly active prodrug inhibitor, the liberated carboxylic acid represents a highly potent inhibitor of rhodesain (K\(_i\) = 4.0 nM). The simulations indicate that, after the cleavage of the ester, the carboxylic acid leaves the active site and re-binds to the enzyme in an orientation that allows the formation of a very stable π-complex between the catalytic dyad (Cys-25/His-162) of rhodesain and the electrophilic aromatic moiety. The reversible inhibition mode results because the S\(_N\)Ar reaction, which is found in an alkaline solvent containing a low molecular weight thiol, is hindered within the enzyme due to the presence of the positively charged imidazolium ring of His-162. Comparisons between measured and calculated NMR shifts support this interpretation}, language = {en} } @article{BarthelsMarincolaMarciniaketal.2020, author = {Barthels, Fabian and Marincola, Gabriella and Marciniak, Tessa and Konh{\"a}user, Matthias and Hammerschmidt, Stefan and Bierlmeier, Jan and Distler, Ute and Wich, Peter R. and Tenzer, Stefan and Schwarzer, Dirk and Ziebuhr, Wilma and Schirmeister, Tanja}, title = {Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A}, series = {ChemMedChem}, volume = {15}, journal = {ChemMedChem}, number = {10}, doi = {10.1002/cmdc.201900687}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214581}, pages = {839 -- 850}, year = {2020}, abstract = {Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with drug-resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active-site cysteine. A broad series of derivatives were synthesized to derive structure-activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single-digit micromolar Ki values and caused up to a 66 \% reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase-mediated adherence of S. aureus cells.}, language = {en} } @article{AlrefaiMuhammadRudolfetal.2016, author = {Alrefai, Hani and Muhammad, Khalid and Rudolf, Ronald and Pham, Duong Anh Thuy and Klein-Hessling, Stefan and Patra, Amiya K. and Avots, Andris and Bukur, Valesca and Sahin,, Ugur and Tenzer, Stefan and Goebeler, Matthias and Kerstan, Andreas and Serfling, Edgar}, title = {NFATc1 supports imiquimod-induced skin inflammation by suppressing IL-10 synthesis in B cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms11724}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173053}, year = {2016}, abstract = {Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory human skin disease. Here we show that mice depleted of B cells or bearing interleukin (IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour necrosis factor-α and IL-17 by T cells. These data indicate a close link between NFATc1 and IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform, NFATc1/αA, as a potential target to treat human psoriasis.}, language = {en} }