@article{BaeuerleinRiedelBakeretal.2013, author = {B{\"a}uerlein, Carina A. and Riedel, Simone S. and Baker, Jeanette and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Chopra, Martin and Ritz, Miriam and Beilhack, Georg F. and Schulz, Stephan and Zeiser, Robert and Schlegel, Paul G. and Einsele, Hermann and Negrin, Robert S. and Beilhack, Andreas}, title = {A diagnostic window for the treatment of acute graft-versus-host disease prior to visible clinical symptoms in a murine model}, series = {BMC Medicine}, journal = {BMC Medicine}, doi = {10.1186/1741-7015-11-134}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96797}, year = {2013}, abstract = {Background Acute graft-versus-host disease (aGVHD) poses a major limitation for broader therapeutic application of allogeneic hematopoietic cell transplantation (allo-HCT). Early diagnosis of aGVHD remains difficult and is based on clinical symptoms and histopathological evaluation of tissue biopsies. Thus, current aGVHD diagnosis is limited to patients with established disease manifestation. Therefore, for improved disease prevention it is important to develop predictive assays to identify patients at risk of developing aGVHD. Here we address whether insights into the timing of the aGVHD initiation and effector phases could allow for the detection of migrating alloreactive T cells before clinical aGVHD onset to permit for efficient therapeutic intervention. Methods Murine major histocompatibility complex (MHC) mismatched and minor histocompatibility antigen (miHAg) mismatched allo-HCT models were employed to assess the spatiotemporal distribution of donor T cells with flow cytometry and in vivo bioluminescence imaging (BLI). Daily flow cytometry analysis of peripheral blood mononuclear cells allowed us to identify migrating alloreactive T cells based on homing receptor expression profiles. Results We identified a time period of 2 weeks of massive alloreactive donor T cell migration in the blood after miHAg mismatch allo-HCT before clinical aGVHD symptoms appeared. Alloreactive T cells upregulated α4β7 integrin and P-selectin ligand during this migration phase. Consequently, targeted preemptive treatment with rapamycin, starting at the earliest detection time of alloreactive donor T cells in the peripheral blood, prevented lethal aGVHD. Conclusions Based on this data we propose a critical time frame prior to the onset of aGVHD symptoms to identify alloreactive T cells in the peripheral blood for timely and effective therapeutic intervention.}, language = {en} } @article{BaeuerleinQureischiMokhtarietal.2021, author = {B{\"a}uerlein, Carina A. and Qureischi, Musga and Mokhtari, Zeinab and Tabares, Paula and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Riedel, Simone S. and Chopra, Martin and Reu, Simone and Mottok, Anja and Arellano-Viera, Estibaliz and Graf, Carolin and Kurzwart, Miriam and Schmiedgen, Katharina and Einsele, Hermann and W{\"o}lfl, Matthias and Schlegel, Paul-Gerhardt and Beilhack, Andreas}, title = {A T-Cell Surface Marker Panel Predicts Murine Acute Graft-Versus-Host Disease}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.593321}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224290}, year = {2021}, abstract = {Acute graft-versus-host disease (aGvHD) is a severe and often life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). AGvHD is mediated by alloreactive donor T-cells targeting predominantly the gastrointestinal tract, liver, and skin. Recent work in mice and patients undergoing allo-HCT showed that alloreactive T-cells can be identified by the expression of α4β7 integrin on T-cells even before manifestation of an aGvHD. Here, we investigated whether the detection of a combination of the expression of T-cell surface markers on peripheral blood (PB) CD8\(^+\) T-cells would improve the ability to predict aGvHD. To this end, we employed two independent preclinical models of minor histocompatibility antigen mismatched allo-HCT following myeloablative conditioning. Expression profiles of integrins, selectins, chemokine receptors, and activation markers of PB donor T-cells were measured with multiparameter flow cytometry at multiple time points before the onset of clinical aGvHD symptoms. In both allo-HCT models, we demonstrated a significant upregulation of α4β7 integrin, CD162E, CD162P, and conversely, a downregulation of CD62L on donor T-cells, which could be correlated with the development of aGvHD. Other surface markers, such as CD25, CD69, and CC-chemokine receptors were not found to be predictive markers. Based on these preclinical data from mouse models, we propose a surface marker panel on peripheral blood T-cells after allo-HCT combining α4β7 integrin with CD62L, CD162E, and CD162P (cutaneous lymphocyte antigens, CLA, in humans) to identify patients at risk for developing aGvHD early after allo-HCT.}, language = {en} } @article{VargasWagnerShaikhetal.2022, author = {Vargas, Juan Gamboa and Wagner, Jennifer and Shaikh, Haroon and Lang, Isabell and Medler, Juliane and Anany, Mohamed and Steinfatt, Tim and Mosca, Josefina Pe{\~n}a and Haack, Stephanie and Dahlhoff, Julia and B{\"u}ttner-Herold, Maike and Graf, Carolin and Viera, Estibaliz Arellano and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {A TNFR2-Specific TNF fusion protein with improved in vivo activity}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.888274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277436}, year = {2022}, abstract = {Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300\% in vivo 5 days after treatment. Treg numbers remained as high as 200\% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD.}, language = {en} } @article{McFlederMakhotkinaGrohetal.2023, author = {McFleder, Rhonda L. and Makhotkina, Anastasiia and Groh, Janos and Keber, Ursula and Imdahl, Fabian and Pe{\~n}a Mosca, Josefina and Peteranderl, Alina and Wu, Jingjing and Tabuchi, Sawako and Hoffmann, Jan and Karl, Ann-Kathrin and Pagenstecher, Axel and Vogel, J{\"o}rg and Beilhack, Andreas and Koprich, James B. and Brotchie, Jonathan M. and Saliba, Antoine-Emmanuel and Volkmann, Jens and Ip, Chi Wang}, title = {Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson's disease}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43224-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357696}, year = {2023}, abstract = {Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson's disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut.}, language = {en} } @article{DaViaSolimandoGaritanoTrojaolaetal.2019, author = {Da Vi{\`a}, Matteo Claudio and Solimando, Antonio Giovanni and Garitano-Trojaola, Andoni and Barrio, Santiago and Munawar, Umair and Strifler, Susanne and Haertle, Larissa and Rhodes, Nadine and Vogt, Cornelia and Lapa, Constantin and Beilhack, Andreas and Rasche, Leo and Einsele, Hermann and Kort{\"u}m, K. Martin}, title = {CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement}, series = {The Oncologist}, volume = {25}, journal = {The Oncologist}, number = {2}, doi = {10.1634/theoncologist.2019-0356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219549}, pages = {112-118}, year = {2019}, abstract = {Combined MEK-BRAF inhibition is a well-established treatment strategy in BRAF-mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF-MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10\% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1\% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient.}, language = {en} } @article{HorvatVogelKampfetal.2020, author = {Horvat, Sonja and Vogel, Patrick and Kampf, Thomas and Brandl, Andreas and Alshamsan, Aws and Alhadlaq, Hisham A. and Ahamed, Maqusood and Albrecht, Krystyna and Behr, Volker C. and Beilhack, Andreas and Groll, J{\"u}rgen}, title = {Crosslinked Coating Improves the Signal-to-Noise Ratio of Iron Oxide Nanoparticles in Magnetic Particle Imaging (MPI)}, series = {ChemNanoMat}, volume = {6}, journal = {ChemNanoMat}, number = {5}, doi = {10.1002/cnma.202000009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214718}, pages = {755 -- 758}, year = {2020}, abstract = {Magnetic particle imaging is an emerging tomographic method used for evaluation of the spatial distribution of iron-oxide nanoparticles. In this work, the effect of the polymer coating on the response of particles was studied. Particles with covalently crosslinked coating showed improved signal and image resolution.}, language = {en} } @article{SchwinnMokhtariThuseketal.2021, author = {Schwinn, Stefanie and Mokhtari, Zeinab and Thusek, Sina and Schneider, Theresa and Sir{\´e}n, Anna-Leena and Tiemeyer, Nicola and Caruana, Ignazio and Miele, Evelina and Schlegel, Paul G. and Beilhack, Andreas and W{\"o}lfl, Matthias}, title = {Cytotoxic effects and tolerability of gemcitabine and axitinib in a xenograft model for c-myc amplified medulloblastoma}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-93586-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261476}, year = {2021}, abstract = {Medulloblastoma is the most common high-grade brain tumor in childhood. Medulloblastomas with c-myc amplification, classified as group 3, are the most aggressive among the four disease subtypes resulting in a 5-year overall survival of just above 50\%. Despite current intensive therapy regimens, patients suffering from group 3 medulloblastoma urgently require new therapeutic options. Using a recently established c-myc amplified human medulloblastoma cell line, we performed an in-vitro-drug screen with single and combinatorial drugs that are either already clinically approved or agents in the advanced stage of clinical development. Candidate drugs were identified in vitro and then evaluated in vivo. Tumor growth was closely monitored by BLI. Vessel development was assessed by 3D light-sheet-fluorescence-microscopy. We identified the combination of gemcitabine and axitinib to be highly cytotoxic, requiring only low picomolar concentrations when used in combination. In the orthotopic model, gemcitabine and axitinib showed efficacy in terms of tumor control and survival. In both models, gemcitabine and axitinib were better tolerated than the standard regimen comprising of cisplatin and etoposide phosphate. 3D light-sheet-fluorescence-microscopy of intact tumors revealed thinning and rarefication of tumor vessels, providing one explanation for reduced tumor growth. Thus, the combination of the two drugs gemcitabine and axitinib has favorable effects on preventing tumor progression in an orthotopic group 3 medulloblastoma xenograft model while exhibiting a favorable toxicity profile. The combination merits further exploration as a new approach to treat high-risk group 3 medulloblastoma.}, language = {en} } @article{SchusterKruegerSubotaetal.2017, author = {Schuster, Sarah and Kr{\"u}ger, Timothy and Subota, Ines and Thusek, Sina and Rotureau, Brice and Beilhack, Andreas and Engstler, Markus}, title = {Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system}, series = {eLife}, volume = {6}, journal = {eLife}, doi = {10.7554/eLife.27656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158662}, pages = {e27656}, year = {2017}, abstract = {The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.}, language = {en} } @article{YuWolfThuseketal.2021, author = {Yu, Yidong and Wolf, Ann-Katrin and Thusek, Sina and Heinekamp, Thorsten and Bromley, Michael and Krappmann, Sven and Terpitz, Ulrich and Voigt, Kerstin and Brakhage, Axel A. and Beilhack, Andreas}, title = {Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228855}, year = {2021}, abstract = {Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates.}, language = {en} } @article{KalledaAmichArslanetal.2016, author = {Kalleda, Natarajaswamy and Amich, Jorge and Arslan, Berkan and Poreddy, Spoorthi and Mattenheimer, Katharina and Mokhtari, Zeinab and Einsele, Hermann and Brock, Matthias and Heinze, Katrin Gertrud and Beilhack, Andreas}, title = {Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens}, series = {Frontiers in Microbiology}, volume = {7}, journal = {Frontiers in Microbiology}, number = {1107}, doi = {10.3389/fmicb.2016.01107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165368}, year = {2016}, abstract = {Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4\(^+\) or CD8\(^+\) T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b\(^+\) myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b\(^+\) myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions.}, language = {en} }